首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During plant growth and development, root tip performs multifarious functions integrating diverse external and internal stimuli to regulate root elongation and architecture. It is believed that a signal originating from root tip inhibits lateral root formation (LRF). The excision of root tip induced LRF in tomato seedlings associated with accumulation of auxin in pericycle founder cells. The excision of cotyledons slightly reduced LRF, whereas severing shoot from root completely abolished LRF. Exogenous ethylene application did not alter LRF. The response was modulated by light with higher LRF in seedlings exposed to light. Our results indicate that light plays a role in LRF in seedlings by likely modulating shoot derived auxin.  相似文献   

2.
Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5 , enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation.  相似文献   

3.
The role of ethylene in the formation of adventitious roots in vitro was studied in tomato (Lycopersicon esculentum Mill. cv. UC 105) cotyledons and lavandin (Lavandula officinalis Chaix × Lavandula latifolia microshoots. Both systems were able to form roots on hormone-free medium evolving low amounts of ethylene. The addition of 20–50 M indole-3-acetic acid (IAA) inhibited root formation in tomato cotyledons while increasing ethylene production. Naphthaleneacetic acid (NAA, 3 M) stimulated root number in lavandin explants and induced a transient rise in ethylene evolution. Enhanced ethylene levels via the endogenous precursors 1-aminocyclopropane-1-carboxylic acid (ACC, 25–50 M) drastically impaired root regeneration and growth in tomato. In lavandin, 10 M ACC stimulated ethylene production and significantly inhibited the rooting percentage and root growth. Conversely, ACC enhanced the root number in the presence of NAA only. Severe inhibition of rooting was also caused by ethylene reduction via biosynthetic inhibitors, aminoethoxyvinylglycine (AVG, 5–10 M) in tomato, and salicylic acid (SA, 100 M) in lavandin. A strict requirement of endogenous ethylene for adventitious root induction and growth is thus suggested.Abbreviations LS Linsmaier and Skoog medium - BA N6-benzyladenine - NAA 1-naphthaleneacetic acid - IAA Indole-3-acetic acid - AVG Aminoethoxyvinylglycine - SA Salicylic acid - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

4.
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1‐methylcyclopropene (1‐MCP), the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin‐induced AR formation was inhibited by 1‐MCP, although ethylene‐induced AR formation was not inhibited by NPA. Both ethylene‐ and auxin‐induced AR formation were counteracted by DPI. These results indicate that auxin‐induced AR formation is dependent on ethylene, whereas ethylene‐induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene‐ and auxin‐induced AR formation in cucumber plants.  相似文献   

5.
Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.  相似文献   

6.
7.
Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild‐type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.  相似文献   

8.
不定根发生分子调控机制的研究进展   总被引:3,自引:0,他引:3  
魏丽  蒋湘宁  裴东 《生命科学》2006,18(3):266-272
不定根发生问题,既是植物无性繁殖和工厂化育苗实践的核心问题,又是植物发育和形态建成等方面的重要理论问题。由于不定根发生过程的复杂性,到目前为止对其调控机制的了解还十分有限。大量研究证实,不定根发生与植物生长素类物质密切相关,因此现有的研究不仅围绕生长素及其信号传导途径展开,而且还涉及到基因表观遗传学调控水平。目前已经鉴定出一些与不定根发生相关的生长素信号传导因子,如NO、cGMP、microRNAs等。同时,还克隆到一些与不定根发生相关的基因,如OsPIN1、OsCKI1、NPK1、ARL1等。此外,发现DNA甲基化可以抑制DNA与蛋白(MeCP2) 的结合,从而抑制基因转录;microRNA可以使基因沉默来调控不定根的发生状况。本文围绕不定根发生的激素调控、不定根发生的基因调控、不定根发生的生长素信号传导机制、表观遗传调控等几个方面综述了近年来的研究进展。  相似文献   

9.
BACKGROUND AND AIMS: Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES: The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS: CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.  相似文献   

10.
11.
Adventitious rooting in Rumex plants, in which the root systems were in hypoxic conditions, differed considerably between two species. R. palustris, a species from frequently flooded river forelands, developed a large number of adventitious roots during hypoxia, whereas adventitious root formation was poor in R. thyrsiflorus, a species from seldom flooded dykes and river dunes. Adventitious rooting could also be evoked in aerated plants of both species by application of auxin (1-naphthaleneacetic acid or indoleacetic acid) to the leaves. The response to auxin was dose-dependent, but even high auxin doses could not stimulate R. thyrsiflorus to produce as many adventitious roots as R. palustris. Consequently, the difference between the species in the amount of adventitious root formation was probably genetically determined, and not a result of a different response to auxin. A prerequisite for hypoxia-induced adventitious root formation is the basipetal transport of auxin within the shoot, as specific inhibition of this transport by N-1-naphthylphthalamic acid severely decreased the number of roots in hypoxia-treated plants. It is suggested that hypoxia of the root system causes stagnation of auxin transport in the root system. This can lead to an accumulation of auxin at the base of the shoot rosette, resulting in adventitious root formation.  相似文献   

12.
Ubiquitin-mediated protein modification plays a key role in many cellular signal transduction pathways. The Arabidopsis gene XBAT32 encodes a protein containing an ankyrin repeat domain at the N-terminal half and a RING finger motif. The XBAT32 protein is capable of ubiquitinating itself. Mutation in XBAT32 causes a number of phenotypes including severe defects in lateral root production and in the expression of the cell division marker CYCB1;1::GUS . The XBAT32 gene is expressed abundantly in the vascular system of the primary root, but not in newly formed lateral root primordia. Treatment with auxin increases the expression of XBAT32 in the primary root and partially rescues the lateral root defect in xbat32 - 1 mutant plants. Thus, XBAT32 is a novel ubiquitin ligase required for lateral root initiation.  相似文献   

13.
The influence of nicotianamine (NA) on formation and elongation of adventitious roots in hypocotyls of de-rooted NA-less mutant seedlings of Lycopersicon esculentum Mill, was examined in relation to the iron supply [ferric N-N'-ethylenediaminedi-(2-hydroxyphenylacetate) (FEDDHA), ferric ethylenediaminetetracetate (FeEDTA), ferric N-(2-hydroxyethyl)-ethylenediaminetriacetate (FeHEDTA, Fe-citrate and FeCl3] in the nutrient solution. The initiation of root primordia in hypocotyl cuttings was independent of NA and occurred with about the same frequency in both, mutant and wild-type. In the mutant the development of primordia to adventitious roots was blocked at all iron sources used, except FeEDTA. Addition of NA (5x 10−6 to 2 × 10−5 M ) to the rooting medium resulted in a fast growth of adventitious roots in mutant cuttings with all iron sources tested. Rooting of wild-type cuttings was independent from NA application and iron sources. We suppose that NA is involved in the intracellular transport of iron. Its function is possibly linked with chelation of ferrous iron in the cell.  相似文献   

14.
The tomato geneRSI-1 was previously identified as a molecular marker for auxin-induced lateral root initiation. We have further characterized the expression mode of theRSI-1 gene in tomato andArabidopsis thaliana. Northern blot analyses revealed that the gene was induced specifically by auxin in tomato roots and hypocotyls. For experiments with transgenic plants, the 5′ flanking region of theRSI-1 gene was linked to a GUS reporter gene, then transformed into tomato andArabidopsis. In these transgenic tomato plants, GUS activity was detected at the sites of initiation for lateral and adventitious roots. Expression of the fusion gene was auxin-dependent and tissue-specific. This was consistent with results from the northern blot analyses. In transgenicArabidopsis, the overall expression pattern of theRSI-GUS gene, including tissue specificity and auxin inducibility, was comparable to that in transgenic tomato seedlings. These results indicate that an identical regulatory mechanism for lateral root initiation might be conserved in both plants. Thus, the expression mode of theRSI-CUS gene inArabidopsis mutants defective in lateral root development should be investigated to provide details of this process.  相似文献   

15.
Many soil fungi colonize the roots of pines to form symbiotic organs known as ectomycorrhizas. Dichotomous branching of short lateral roots and the formation of coralloid organs are diagnostic of ectomycorrhizas in many pine species, although the regulation of these changes in root morphology is not well understood. We used axenic root cultures of six pine species to examine the role of auxin, cytokinin, ethylene and nutrients in the regulation of root architecture. Surprisingly, extensive dichotomous and coralloid branching of lateral roots occurred spontaneously in Pinus taeda , P. halepensis and P. muricata . In P. sylvestris , P. ponderosa and P. nigra , treatment with auxin transport inhibitors (ATIs), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the ethylene-releasing compound 2-chloroethylphosphonic acid (CEPA or ethephon) induced extensive dichotomous branching and coralloid organ formation. Formation of both spontaneous and ATI-induced coralloid structures was blocked by treatment with an ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)glycine; this inhibition was reversed by either ACC or CEPA. In addition, the induction of this unique morphogenetic pattern in pine root cultures was regulated by nutrient levels. The morphology and anatomical organization of the chemically induced dichotomous and coralloid structures, as well as the regulation of their formation by nutrient levels, show a striking similarity to those of ectomycorrhizas.  相似文献   

16.
17.
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.  相似文献   

18.
19.
Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7 , reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号