首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genome of influenza B viruses was shown by electrophoresis to consist of eight RNA segments. The fifth largest segment coded for hemagglutinin and the sixth coded for neuraminidase.  相似文献   

2.
Inhibition of neuraminidase (NA) activity prevents release of progeny virions from influenza-infected cells and removal of neuraminic (sialic) acid moieties from glycans attached to hemagglutinin (HA). Neuraminic acid moieties situated near the HA receptor-binding site can reduce the efficiency of virus binding and decrease viral dependence on NA activity for replication. With the use of reverse genetics technique, we investigated the effect of glycans attached at Asn 94a, 129, and 163 on the virus susceptibility to NA inhibitors in MDCK cells and demonstrated that the glycan attached at Asn 163 plays a dominant role in compensation for the loss of NA activity.  相似文献   

3.
Reassortment of influenza A and B viruses has never been observed in vivo or in vitro. Using reverse genetics techniques, we generated recombinant influenza A/WSN/33 (WSN) viruses carrying the neuraminidase (NA) of influenza B virus. Chimeric viruses expressing the full-length influenza B/Yamagata/16/88 virus NA grew to titers similar to that of wild-type influenza WSN virus. Recombinant viruses in which the cytoplasmic tail or the cytoplasmic tail and the transmembrane domain of the type B NA were replaced with those of the type A NA were impaired in tissue culture. This finding correlates with reduced NA content in virions. We also generated a recombinant influenza A virus expressing a chimeric hemagglutinin (HA) protein in which the ectodomain is derived from type B/Yamagata/16/88 virus HA, whereas both the cytoplasmic and the transmembrane domains are derived from type A/WSN virus HA. This A/B chimeric HA virus did not grow efficiently in MDCK cells. However, after serial passage we obtained a virus population that grew to titers as high as wild-type influenza A virus in MDCK cells. One amino acid change in position 545 (H545Y) was found to be responsible for the enhanced growth characteristics of the passaged virus. Taken together, we show here that the absence of reassortment between influenza viruses belonging to different A and B types is not due to spike glycoprotein incompatibility at the level of the full-length NA or of the HA ectodomain.  相似文献   

4.
The neuraminidase associated with the bifunctional protein, hemagglutinin-neuraminidase, of influenza virus has been characterized. The enzyme has a pH optimum of 4.5, does not require Ca2+ and is inactivated (98%) by incubation at 50 degrees C. The enzyme has a Km of 2.00 X 10(-3) M and 0.06 X 10(-3) M with the substrates 2-(3-methoxyphenyl)-N-acetylneuraminic acid and fetuin, respectively. The Ki is 400 X 10(-6) with the inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. The incorporation of labeled cysteine, valine and leucine in the hemagglutinin-neuraminidase protein is different from that of viral neuraminidase. A comparison of the properties of the neuraminidase associated with protein hemagglutinin-neuraminidase with that of viral neuraminidase or sialidase showed that the former is biochemically different and an antigenically distinct enzyme. The unique feature of the new enzyme is that it has the hemagglutinin activity as well. The two biological activities could not be separated from each other in all systems used. Apparently, protein hemagglutinin-neuraminidase is genetically transferable and it is detectable in a laboratory recombinant virus E-2971 (H3 Aichi X N7). These results suggest that protein hemagglutinin-neuraminidase is a unique surface protein of the influenza virus A/Aichi/2/68 (H3N2).  相似文献   

5.
The influenza virus has been a challenge to science due to its ability to withstand new environmental conditions. Taking into account the development of virus sequence databases, computational approaches can be helpful to understand virus behavior over time. Furthermore, they can suggest new directions to deal with influenza. This work presents triplet entropy analysis as a potential phylodynamic tool to quantify nucleotide organization of viral sequences. The application of this measure to segments of hemagglutinin (HA) and neuraminidase (NA) of H1N1 and H3N2 virus subtypes has shown some variability effects along timeline, inferring about virus evolution. Sequences were divided by year and compared for virus subtype (H1N1 and H3N2). The nonparametric Mann–Whitney test was used for comparison between groups. Results show that differentiation in entropy precedes differentiation in GC content for both groups. Considering the HA fragment, both triplet entropy as well as GC concentration show intersection in 2009, year of the recent pandemic. Some conclusions about possible flu evolutionary lines were drawn.  相似文献   

6.
Drugs inhibiting the influenza A virus (IAV) neuraminidase (NA) are the cornerstone of anti-IAV chemotherapy and prophylaxis in man. Drug-resistant mutations in NA arise frequently in human isolates, limiting the therapeutic application of NA inhibitors. Here, we show that antibody-driven antigenic variation in one domain of the H1 hemagglutinin Sa site leads to compensatory mutations in NA, resulting in NA antigenic variation and acquisition of drug resistance. These findings indicate that influenza A virus resistance to NA inhibitors can potentially arise from antibody driven HA escape, confounding analysis of influenza NA evolution in nature.  相似文献   

7.
The nature of amino acid replacements in 16 drift variants of hemagglutinin H3 subtype and 5 drift variants of neuraminidase N2 subtype of the influenza A virus were studied. The dependences of relative replacement frequencies and relative quantities of frequent replacements upon differences of properties of substituted residues are plotted. In contrast to most of the known proteins, amino acid replacements in hemagglutinin and neuraminidase depend weakly on the physico-chemical parameters of amino acids. For the antigenic determinants studied the replacement frequencies were compared to those calculated according to two models: one for conservative replacements and the other for accidental mutation of the genetic code. The differences in the nature of amino acid replacements are found in four antigenic determinants of hemagglutinin. The replacements in experimentally selected proteins are shown to go beyond limitations of natural variants. The explanations of the reasons of low epidemicity of some strains and ineffective attempt to imitate the natural antigenic drift of viruses by using experimental selection are proposed. The causes of time-limited circulation of H3N2 influenza virus subtype are discussed.  相似文献   

8.
9.
Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA.  相似文献   

10.
Recombinant soluble trimeric influenza A virus hemagglutinins (HA) and tetrameric neuraminidases (NAs) have proven to be excellent tools to decipher biological properties. Receptor binding and sialic acid cleavage by recombinant proteins correlate satisfactorily compared to whole viruses. Expression of HA and NA can be achieved in a plethora of different laboratory hosts. For immunological and receptor interaction studies however, insect and mammalian cell expressed proteins are preferred due to the presence of N‐linked glycosylation and disulfide bond formation. Because mammalian‐cell expression is widely applied, an increased expression yield is an important goal. Here we report that using codon‐optimized genes and sfGFP fusions, the expression yield of HA can be significantly improved. sfGFP also significantly increased expression yields when fused to the N‐terminus of NA. In this study, a suite of different hemagglutinin and neuraminidase constructs are described, which can be valuable tools to study a wide array of different HAs, NAs and their mutants.  相似文献   

11.
The SD0 mutant of influenza virus A/WSN/33 (WSN), characterized by a 24-amino-acid deletion in the neuraminidase (NA) stalk, does not grow in embryonated chicken eggs because of defective NA function. Continuous passage of SD0 in eggs yielded 10 independent clones that replicated efficiently. Characterization of these egg-adapted viruses showed that five of the viruses contained insertions in the NA gene from the PB1, PB2, or NP gene, in the region linking the transmembrane and catalytic head domains, demonstrating that recombination of influenza viral RNA segments occurs relatively frequently. The other five viruses did not contain insertions in this region but displayed decreased binding affinity toward sialylglycoconjugates, compared with the binding properties of the parental virus. Sequence analysis of one of the latter viruses revealed mutations in the hemagglutinin (HA) gene, at sites in close proximity to the sialic acid receptor-binding pocket. These mutations appear to compensate for reduced NA function due to stalk deletions. Thus, balanced HA-NA functions are necessary for efficient influenza virus replication.  相似文献   

12.
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus.  相似文献   

13.
G M Air  W G Laver    R G Webster 《Journal of virology》1990,64(12):5797-5803
Monoclonal antibodies which inhibit influenza virus neuraminidase (NA) and which therefore indirectly neutralize virus infectivity bind to epitopes located on the rim of the active-site crater. The three-dimensional structure of one of these epitopes, recognized by monoclonal antibody NC41, has previously been determined (W. R. Tulip, J. N. Varghese, R. G. Webster, G. M. Air, W. G. Laver, and P. M. Colman, Cold Spring Harbor Symp. Quant. Biol. 54:257-263, 1989). Nineteen escape mutants of influenza virus A/tern/Australia/G70c/75 (N9) NA selected with NC41 were sequenced. A surprising restriction was seen in the sequence changes involved. Ten mutants had a Ser-to-Phe change at amino acid 372, and six others had mutations at position 367. No escape mutants with changes at 369 or 370 were found, although these mutations were selected with other antibodies and rendered the epitope unrecognizable by antibody NC41. Another N9 NA, from A/ruddy turnstone/NJ/85, which differs by 14 amino acids from the tern virus NA, still bound antibody NC41. Epitope mapping by selecting multiple escape mutants with antibody NC41 thus identified only three of the five polypeptide loops on NA that contact the antibody. Escape mutants selected sequentially with three different monoclonal antibodies showed three sequence changes in two loops of the NC41 epitope. The multiple mutants were indistinguishable from wild-type virus by using polyclonal rabbit antiserum in double immunodiffusion tests, but NA inhibition titers were fourfold lower. The results suggest that although the NC41 epitope contains 22 amino acids, only a few of these are so critical to the interaction with antibody that a single sequence change allows selection of an escape mutant. In that case, the variety of amino acid sequence changes which can lead to polyclonal selection of new epidemic viruses during antigenic drift might be very limited.  相似文献   

14.
ABSTRACT: BACKGROUND: Influenza virus undergoes rapid evolution by both antigenic shift and antigenic drift. Antibodies, particularly those binding near the receptor-binding site of hemagglutinin (HA) or the neuraminidase (NA) active site, are thought to be the primary defense against influenza infection, and mutations in antibody binding sites can reduce or eliminate antibody binding. The binding of antibodies to their cognate antigens is governed by such biophysical properties of the interacting surfaces as shape, non-polar and polar surface area, and charge. Methods: To understand forces shaping evolution of influenza virus, we have examined HA sequences of human influenza A and B viruses, assigning each amino acid values reflecting total accessible surface area, non-polar and polar surface area, and net charge due to the side chain. Changes in each of these values between neighboring sequences were calculated for each residue and mapped onto the crystal structures. Results: Areas of HA showing the highest frequency of changes agreed well with previously identified antigenic sites in H3 and H1 HAs, and allowed us to propose more detailed antigenic maps and novel antigenic sites for H1 and influenza B HA. Changes in biophysical properties differed between HAs of different subtypes, and between different antigenic sites of the same HA. For H1, statistically significant differences in several biophysical quantities compared to residues lying outside antigenic sites were seen for some antigenic sites but not others. Influenza B antigenic sites all show statistically significant differences in biophysical quantities for all antigenic sites, whereas no statistically significant differences in biophysical quantities were seen for any antigenic site is seen for H3. In many cases, residues previously shown to be under positive selection at the genetic level also undergo rapid change in biophysical properties. Conclusions: The biophysical consequences of amino acid changes introduced by antigenic drift vary from subtype to subtype, and between different antigenic sites. This suggests that the significance of antibody binding in selecting new variants may also be variable for different antigenic sites and influenza subtypes.  相似文献   

15.
Triton X-100-solubilized membrane glycoproteins (neuraminidase and hemagglutinin) from purified equine influenza virus particles were separated by column displacement electrophoresis (isotachophoresis) in the presence of Pharmalyte spacers. Electrophoresis was performed in a 1.80 cm glass electrophoresis column with Sephadex G-25 Fine serving as supporting medium. Triton X-100 was present in the system to suppress protein aggregation. Neuraminidase and hemagglutinin activities were preserved and appeared in the electropherogram as separate peaks with some overlapping.  相似文献   

16.
The neuraminidase of influenza virus   总被引:22,自引:0,他引:22  
G M Air  W G Laver 《Proteins》1989,6(4):341-356
It is the enzyme neuraminidase, projecting from the surface of influenza virus particles, which allows the virus to leave infected cells and spread in the body. Antibodies which inhibit the enzyme limit the infection, but antigenic variation of the neuraminidase renders it ineffective in a vaccine. This article describes the crystal structure of influenza virus neuraminidase, information about the active site which may lead to development of specific and effective inhibitors of the enzyme, and the structure of epitopes (antigenic determinants) on the neuraminidase. The 3-dimensional structure of the epitopes was obtained by X-ray diffraction methods using crystals of neuraminidase complexed with monoclonal antibody Fab fragments. Escape mutants, selected by growing virus in the presence of monoclonal antibodies to the neuraminidase, possess single amino acid sequence changes. The crystal structure of two mutants showed that the change in structure was restricted to that particular sidechain, but the change in the epitope was sufficient to abolish antibody binding even though it is known in one case that 21 other amino acids on the neuraminidase are in contact with the antibody.  相似文献   

17.
Influenza virus A (FluA) reassortants with low-functional neuraminidase (NA) of subtype N1 and hemagglutinin (HA) of subtypes H2, H3, H4, and H13 display virion aggregation and accumulate to a lower titer because sialyl residues are not completely removed from virion components. Nonaggregating variants of FluA (H13N1) were shown to result from a mutation that reduces the HA affinity for sialyl substrates. Amino acid substitution K156E, which increases a negative charge at the edge of the receptor-binding pocket of HA large subunit (HA1), was revealed in two independent variants. This substitution was the only difference between HA1 of the original reassortant and one of its variants and, therefore, accounted for restoration of the functional match between HA and NA.  相似文献   

18.
H Jin  G P Leser  J Zhang    R A Lamb 《The EMBO journal》1997,16(6):1236-1247
The cytoplasmic tails of the influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA) are highly conserved in sequence for all virus subtypes and it is believed that assembly of this enveloped virus depends on interactions of these domains with cytoplasmic viral components. However, it is possible to rescue altered influenza viruses lacking either the HA or NA cytoplasmic tails. We have obtained an influenza virus that lacks both the cytoplasmic tail of HA and NA. Particle production is reduced approximately 10-fold but these particles, although having a fairly normal protein composition, are greatly elongated and of extended irregular shape. We propose a model in which the interactions of the cytoplasmic tails of HA and NA with an internal viral component are so important for spherical virion shape that there is dual redundancy in the interactions.  相似文献   

19.
A total of 14 I-Ad-restricted helper T-cell clones specific for the hemagglutinin (HA) molecule of influenza virus were isolated from spleens of BALB/c or (BALB/c X C57BL/10)F1 mice immunized with the H3 subtype influenza virus A/Memphis/71 (Mem 71) and from lymph nodes of BALB/c mice primed with purified HA. The specificity of these T-cell clones was assessed in proliferation assays by reactivity with naturally occurring strains of viruses that arose by antigenic drift and contain known amino acid sequence changes in HA and with a panel of monoclonal antibody (MAb)-selected mutants of Mem 71 with single amino acid substitutions in HA. The HA genes of those mutant viruses that failed to stimulate one or more of the T-cell clones were sequenced. The clones could be allocated to at least four groups, each group having a distinct pattern of reactivity with the panel of natural field strains. The epitopes recognized by the four groups of clones were found, by reactivity with MAb-selected mutants, to be in very close proximity to one another and probably overlapping. All of the distinct epitopes recognized by the T-cell clones were adversely affected by a single amino acid substitution, either at residue 60 or at residue 63 in the HA1 polypeptide chain, within the region known from antibody-binding studies as site E. Some, but not all, of the epitopes may be influenced by the addition of a carbohydrate side chain to the HA of a particular MAb-selected mutant and certain field strains containing an Asp----Asn substitution at residue 63. Site E is therefore a major site of H-2d helper T-cell recognition on the H3 HA.  相似文献   

20.
Synthetic peptides of increasing length and corresponding in sequence to the C-terminal end of the HA1 molecule of influenza virus were constructed and examined for their immunogenic and antigenic properties. Peptides containing at least the four C-terminal amino acids, when coupled to keyhole limpet hemocyanin, were capable of eliciting antibody in BALB/c mice that bound to the 24-residue parent peptide H3 HA1 (305 to 328). In the absence of a carrier, the C-terminal decapeptide was the shortest peptide capable of eliciting antibody. The specificity of this antibody was indistinguishable from that of a monoclonal antibody to the parent peptide which recognizes an epitope encompassed by the C-terminal seven residues. All peptides containing at least the C-terminal four residues were able to inhibit completely the binding of this monoclonal antibody to the parent peptide. Taken together, these results indicate that (i) the tetrapeptide is capable of eliciting specific antibody when coupled to a carrier, (ii) this tetrapeptide possesses all of the antigenic information necessary to occupy the paratope of a monoclonal antibody elicited by the longer parent peptide, and (iii) the decapeptide contains all of the information necessary to elicit a specific immune response and therefore carries an epitope recognized by T cells as well as one recognized by B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号