共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine mussels (Mytilus trossulus) attach to a wide variety of surfaces underwater using a protein adhesive that is cured by the surrounding seawater environment. In this study, the influence of environmental post-processing on adhesion strength was investigated by aging adhesive plaques in a range of seawater pH conditions. Plaques took 8–12 days to achieve full strength at pH 8, nearly doubling in adhesion strength (+94%) and increasing the work required to dislodge (+59%). Holding plaques in low pH conditions prevented strengthening, causing the material to tear more frequently under tension. The timescale of strengthening is consistent with the conversion of DOPA to DOPA-quinone, a pH dependent process that promotes cross-linking between adhesive proteins. The precise arrangement of DOPA containing proteins away from the adhesive-substratum interface emphasizes the role that structural organization can have on function, an insight that could lead to the design of better synthetic adhesives and metal-coordinating hydrogels. 相似文献
2.
Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus 总被引:4,自引:0,他引:4
Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of approximately 93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-l-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including approximately 36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. 相似文献
3.
A fungal infection has been found in the mussel Mytilus galloprovincialis from Adriatic Sea mussel farms. The infection ultimately results in the loss of the byssus, with serious consequences for mussel farming yield. The pathogen provokes the progressive destruction of the foot muscles, also damaging related structures such as the intra-organism part of the byssus apparatus, resulting in loss of the thread component. The affected health status of the animal is also sustained by modifications in the digestive gland structure, ranging from hyperactivity to extreme cell death in the tubula. At present, the identity of the harmful fungus is unknown. 相似文献
4.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7-7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species. 相似文献
5.
Trevor W. Gilbert 《Biofouling》2013,29(7):829-836
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species. 相似文献
6.
L M McDowell L A Burzio J H Waite J Schaefer 《The Journal of biological chemistry》1999,274(29):20293-20295
13C2H rotational echo double resonance NMR has been used to provide the first evidence for the formation of quinone-derived cross-links in mussel byssal plaques. Labeling of byssus was achieved by allowing mussels to filter feed from seawater containing L-[phenol-4-13C]tyrosine and L-[ring-d4]tyrosine for 2 days. Plaques and threads were harvested from two groups of mussels over a period of 28 days. One group was maintained in stationary water while the other was exposed to turbulent flow at 20 cm/s. The flow-stressed byssal plaques exhibited significantly enhanced levels of 5, 5'-di-dihydroxyphenylalanine cross-links. The average concentration of di-dihydroxyphenylalanine cross-links in byssal plaques is 1 per 1800 total protein amino acid residues. 相似文献
7.
S.G. Cheung P.Y. Tong K.M. Yip P.K.S. Shin 《Marine and Freshwater Behaviour and Physiology》2013,45(2):127-135
Juveniles of the green-lipped mussel Perna viridis (Bivalvia: Mytilidae) were exposed to either chemical cues of damaged conspecifics or predator, including the swimming crab Thalamita danae and the muricid gastropod Thais clavigera. Byssus production was monitored for 48?h but the highest production rate occurred in the first 6?h. Longer and thicker byssal threads with a larger total volume were produced by P. viridis exposed to damaged conspecifics and predators as compared with the control. Numbers of individuals which shed stalks during the experiment varied significantly from 0 to 50%, and with a significantly higher value obtained for the control. Results indicated that byssus production is a plastic response which could be induced by exposure to chemical signals from predators and damaged conspecifics, the latter producing the largest response. Firmer byssal attachment not only reduces predation risk but also non-predation mortality by securing an animal more effectively to its habitat. 相似文献
8.
Chemical cues from predators and damaged conspecifics affect byssus production in the green-lipped mussel perna viridis 总被引:1,自引:0,他引:1
S. G. Cheung P. Y. Tong K. M. Yip P. K. S. Shin 《Marine and Freshwater Behaviour and Physiology》2004,37(2):127-135
Juveniles of the green-lipped mussel Perna viridis (Bivalvia: Mytilidae) were exposed to either chemical cues of damaged conspecifics or predator, including the swimming crab Thalamita danae and the muricid gastropod Thais clavigera. Byssus production was monitored for 48 h but the highest production rate occurred in the first 6 h. Longer and thicker byssal threads with a larger total volume were produced by P. viridis exposed to damaged conspecifics and predators as compared with the control. Numbers of individuals which shed stalks during the experiment varied significantly from 0 to 50%, and with a significantly higher value obtained for the control. Results indicated that byssus production is a plastic response which could be induced by exposure to chemical signals from predators and damaged conspecifics, the latter producing the largest response. Firmer byssal attachment not only reduces predation risk but also non-predation mortality by securing an animal more effectively to its habitat. 相似文献
9.
10.
Summary Immunocytochemical methods were applied to study the distribution of putative neurotransmitters (5-HT, substance P, GABA, glutamate and aspartate) in the nerve plexuses of the foot and the anterior byssus retractor muscle (ABRM) of Mytilus galloprovincialis (Mollusca, Bivalvia). The foot presents extensive nerve plexuses containing 5-HT and substance P-like immunoreactive material with a similar distribution beneath the surface epithelium, around the vessels and in the glandular regions. Coexistence of the two putative neurotransmitters was observed in a few nerve fibers, Conversely, muscle fibers, both in the foot and in the ABRM, are innervated only by 5-HT-positive fibers, while substance P-like material is present only in the networks of the ABRM epimysial sheath. Immunoreactivity for glutamate and aspartate was not demonstrated, while rare GABA-positive nerve cells and fibers were found only in the foot. The results of this investigation provide a morphological background to previous physiological studies on 5-HT in the nervous system of bivalve molluscs. Moreover, they confirm that the nervous system of Mytilus contains a remarkable amount of a substance related to the vertebrate tachykinin family. 相似文献
11.
The interaction between two proteins, Mefp-1 and Mefp-2, from the byssal plaque of the blue mussel, Mytilus edulis, was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The challenge in using a surface-sensitive technique to investigate the interaction between two strongly adhesive proteins was met by coupling a biotinylated version of one of the proteins (b-Mefp-1) to an inert two-dimensional arrangement of streptavidin (SA) formed on top of a biotin-doped supported phospholipid bilayer. The interaction between Mefp-1 and Mefp-2 was further investigated by addition of Mefp-2 to SA-coupled b-Mefp-1, where the latter was either in the native state or cross-linked using sodium periodate (NaIO(4)), Cu(2+), or mushroom tyrosinase. With this coupling strategy it is shown that a requirement for attraction between the two proteins is that tyrosinase is used as the cross-linking agent of b-Mefp-1. By inhibiting the enzymatic activity of tyrosinase it is also shown that enzymatic activity is required for both efficient binding of tyrosinase to SA-coupled b-Mefp-1 as well as for the subsequent binding of Mefp-2. In contrast, spontaneous adsorption of Mefp-1 to a methyl-terminated (thiolated) gold surface followed by addition of Mefp-2 results in binding of Mefp-2 for all cross-linking agents. This suggests that cross-linking of Mefp-1 adsorbed on a solid surface induces structural changes in the adsorbed protein layer, resulting in exposure of free surface patches on which Mefp-2 binds. 相似文献
12.
Schriefer JL Robling AG Warden SJ Fournier AJ Mason JJ Turner CH 《Journal of biomechanics》2005,38(3):467-475
Laboratory mice provide a versatile experimental model for studies of skeletal biomechanics. In order to determine the strength of the mouse skeleton, mechanical testing has been performed on a variety of bones using several procedures. Because of differences in testing methods, the data from previous studies are not comparable. The purpose of this study was to determine which long bone provides the values closest to the published material properties of bone, while also providing reliable and reproducible results. To do this, the femur, humerus, third metatarsal, radius, and tibia of both the low bone mass C57BL/6H (B6) and high bone mass C3H/HeJ (C3H) mice were mechanically tested under three-point bending. The biomechanical tests showed significant differences between the bones and between mouse strains for the five bones tested (p < 0.05). Computational models of the femur, metatarsal, and radius were developed to visualize the types of measurement error inherent in the three-point bending tests. The models demonstrated that measurement error arose from local deformation at the loading point, shear deformation and ring-type deformation of the cylindrical cross-section. Increasing the aspect ratio (bone length/width) improved the measurement of Young's modulus of the bone for both mouse strains (p < 0.01). Bones with the highest aspect ratio and largest cortical thickness to radius ratio were better for bending tests since less measurement error was observed in the computational models. Of the bones tested, the radius was preferred for mechanical testing because of its high aspect ratio, minimal measurement error, and low variability. 相似文献
13.
Composition and ultrastructure of the byssus of Mytilus edulis 总被引:1,自引:0,他引:1
Three regions of the byssus of the marine mussel Mytilus edulis L. are distinct in structural organization at the macroscopic and microscopic level and in amino acid composition. The threads that emanate from the stem at the base of the foot are divided into two regions. The proximal, elastic region has a crimped, densely staining cortex enclosing an interior matrix of spiral fibers, and its amino acid composition reflects protein heterogeneity. The more distal, rigid region has a straight, tubular cortex surrounding an inner matrix of linearly arranged bundles of fibrils and has a composition approximating pure collagen. The plaque, or disc-shaped portion, which mediates attachment to various substrates, is distinguished by a surface matrix of collagen-like fibers similar to those of the thread region and anchored on an inner spongy matrix. Compositional evidence exists for a collagenous component, a catechol-rich protein, and at least one other accessory protein in the plaque. 相似文献
14.
A comparison of the mechanical properties of the first dorsal interosseous in the dominant and non-dominant hand 总被引:1,自引:0,他引:1
M Tanaka M J McDonagh C T Davies 《European journal of applied physiology and occupational physiology》1984,53(1):17-20
The electrically evoked and voluntary contractile properties of the first dorsal interosseous muscle were measured on both hands in 10 healthy adults. The force of abduction of the index finger interosseous muscle was measured using a transducer resting against the lateral side of the proximal interphalangeal joint. The mean values of time to peak tension measured on the dominant hands were significantly slower than the values on the non-dominant hands (P less than 0.01) in a paired t-test. Maximal tetanic tension, maximal voluntary contraction strength, and maximal twitch tension are not significantly different. Fatigue indices on the dominant hands in each subject were higher than those on the non-dominant hands. The correlation coefficient between fatigue indices on the dominant and the non-dominant hand was 0.92 (P less than 0.01). 相似文献
15.
Zhao H Robertson NB Jewhurst SA Waite JH 《The Journal of biological chemistry》2006,281(16):11090-11096
California mussels Mytilus californianus owe their tenacity to a holdfast known as the byssus, a fibrous extracellular structure that ends distally in flattened adhesive plaques. The "footprints" of freshly secreted plaques deposited onto glass coverslips were shown by matrix-assisted laser desorption ionization time of flight mass spectrometry to consist chiefly of proteins ranging in mass from 5200 to 6700 Da. These proteins, variants of a family known as mcfp3 (M. californianus foot protein 3), were purified from acetic acid/urea extracts of plaques and foot tissue. Mcfp3 appears to sort into fast and slow electrophoretic variants. Both are rich in Gly and Asn and exhibit post-translational hydroxylation of Tyr and Arg to Dopa and 4-hydroxyarginine, respectively, with the fast variant containing more than twice as much Lys + Arg. Both the slow and fast variants were partially sequenced from the N terminus, and the complete sequences of 12 variants were deduced from cDNA using degenerate oligonucleotides, PCR, and rapid amplification of cDNA ends. Mcfp3s are highly polar molecules and contain up to 28 mol % Dopa, which remains intact and may be crucial for adhesion to metal and mineral surfaces. 相似文献
16.
17.
18.
The annulus fibrosus of the intervertebral disk experiences multidirectional tension in vivo, yet the majority of mechanical property testing has been uniaxial. Therefore, our understanding of how this complex multilayered tissue responds to loading may be deficient. This study aimed to determine the mechanical properties of porcine annular samples under uniaxial and biaxial tensile loading. Two-layer annulus samples were isolated from porcine disks from four locations: anterior superficial, anterior deep, posterior superficial, and posterior deep. These tissues were then subjected to three deformation conditions each to a maximal stretch ratio of 1.23: uniaxial, constrained uniaxial, and biaxial. Uniaxial deformation was applied in the circumferential direction, while biaxial deformation was applied simultaneously in the circumferential and compressive directions. Constrained uniaxial consisted of a stretch ratio of 1.23 in the circumferential direction while holding the tissue stationary in the axial direction. The maximal stress and stress-stretch ratio (S-S) moduli determined from the biaxial tests were significantly higher than those observed during both the uniaxial tests (maximal stress, 97.1% higher during biaxial; p=0.002; S-S moduli, 117.9% higher during biaxial; p=0.0004) and the constrained uniaxial tests (maximal stress, 46.8% higher during biaxial; S-S moduli, 82.9% higher during biaxial). These findings suggest that the annulus is subjected to higher stresses in vivo when under multidirectional tension. 相似文献
19.
The gut microbiota of birds is known to be characterized for different species, although it may change with feeding items. In this study, we compared the gut microbiota of birds with different feeding behaviors in the same habitat. We collected fecal samples from three Arctic species, snow buntings Plectrophenax nivalis, sanderlings Calidris alba, and pink‐footed geese Anser brachyrhynchus that are phylogenetically quite distant in different families to evaluate effects of diet on gut microbiota. Also, we characterized the prevalence of fecal bacteria using the Illumina MiSeq platform to sequence bacterial 16S rRNA genes. Our NMDS results showed that fecal bacteria of snow buntings and sanderlings were significantly distant from those of pink‐footed geese. Although all three birds were occupied by three bacterial phyla, Proteobacteria, Firmicutes, and Bacteroidetes, dominant taxa still varied among the species. Our bacterial sequences showed that snow buntings and sanderlings were dominated by Firmicutes and Bacteroidetes, while pink‐footed geese were dominated by Proteobacteria. In addition, the bacterial diversity in snow buntings and sanderlings was significantly higher than that in pink‐footed geese. Our results suggest that insectivorous feeding diet of snow buntings and sanderlings could be responsible for the similar bacterial communities between the two species despite the distant phylogenetic relationship. The distinctive bacterial community in pink‐footed geese was discussed to be related with their herbivorous diet. 相似文献
20.
M J Ravosa 《American journal of physical anthropology》1991,86(3):369-396
Linear dimensions and angular orientations of the browridge, postorbital bar, and postorbital septum were obtained from a representative series of primates and compared with variables associated with several nonmechanical and biomechanical/mechanical models put forward to explain the form and function of the circumorbital region. Analyses of the results indicate that face size is the primary determinant of variation in primate circumorbital morphology. Anteroposterior browridge thickness is correlated with neural-orbital disjunction among anthropoid primates, but not among prosimians. This difference appears related to differences in the construction of the upper face and anterior cranial fossa between prosimians and anthropoids. Little support is demonstrated for the anterior dental loading model of browridge development. Mediolateral postorbital bar width and (to a lesser degree) browridge height are correlated with neurofacial torsion during mastication and variation in masticatory muscle size. These analyses further suggest that since circumorbital structures (especially the browridges) are located the farthest away from the chewing apparatus, they are least affected by masticatory stresses. 相似文献