首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have modeled in vitro infection of African swine fever virus (ASFV) in primary unstimulated cells of the porcine bone marrow and have studied the phenotypical changes in the population of porcine lymphoid cells by cytophotometry. Monocytes and large-sized lymphocytes completely vanished in 72 h of infection which is result of high sensitivity of those cells to ASFV. We describe DNA synthesis in monocytes at 24 h post infection. Cytophotometry of the uninfected cells revealed the few number of atypical lymphocytes and lymphoblasts after 72 h of cultivation; whereas in viral infected cultures, atypical cells appeared in large quantity (about 14%) with 24 h. Most of atypical lymphocytes and lymphoblasts had altered nucleus, and only a small number of atypical cells had additional nucleus. The cytophotometry of main and additional nuclei showed that DNA content didn't exceed diploid standard which indicates that the additional nuclei were consequence of fragmentation of nuclei in lymphocytes.  相似文献   

2.
The aim of this study was to determine filial infection prevalence of experimentally infected colony Ornithodoros moubata Walton (Ixodoidea: Argasidae) ticks for African swine fever virus (ASFV). Three groups of ticks were used: an uninfected control group, one group orally infected with the VIC T90/1 isolate and another group orally infected with the LIV 13/33 isolate of ASFV. The results show that filial infection prevalences were not constant but were highly variable between egg batches from different ticks and between successive egg batches from the same tick. Filial infection prevalences ranged from 1.8% to 31.8% for ticks infected with the VICT90/1 isolate and from 1.2% to 35.5% for ticks infected with the LIV 13/33 isolate. A similar pattern was noted after the third feed. Immunohistochemisty showed that virus replicates in the developing larval cells and not in the yolk sac cells or within the outer layers of the eggs. The results show that ASFV can replicate to a high titre (10(5.1)log10HAD50) within the larval cells of the developing egg.  相似文献   

3.
The African swine fever virus (ASFV) genome contains a gene, 9GL, with similarity to yeast ERV1 and ALR genes. ERV1 has been shown to function in oxidative phosphorylation and in cell growth, while ALR has hepatotrophic activity. 9GL encodes a protein of 119 amino acids and was highly conserved at both nucleotide and amino acid levels among all ASFV field isolates examined. Monospecific rabbit polyclonal antibody produced to a glutathione S-transferase-9GL fusion protein specifically immunoprecipitated a 14-kDa protein from macrophage cell cultures infected with the ASFV isolate Malawi Lil-20/1 (MAL). Time course analysis and viral DNA synthesis inhibitor experiments indicated that p14 was a late viral protein. A 9GL gene deletion mutant of MAL (Delta9GL), exhibited a growth defect in macrophages of approximately 2 log(10) units and had a small-plaque phenotype compared to either a revertant (9GL-R) or the parental virus. 9GL affected normal virion maturation; virions containing acentric nucleoid structures comprised 90 to 99% of all virions observed in Delta9GL-infected macrophages. The Delta9GL virus was markedly attenuated in swine. In contrast to 9GL-R infection, where mortality was 100%, all Delta9GL-infected animals survived infection. With the exception of a transient fever response in some animals, Delta9GL-infected animals remained clinically normal and exhibited significant 100- to 10,000-fold reductions in viremia titers. All pigs previously infected with Delta9GL survived infection when subsequently challenged with a lethal dose of virulent parental MAL. Thus, ASFV 9GL gene deletion mutants may prove useful as live-attenuated ASF vaccines.  相似文献   

4.
The effects of infection with African swine fever virus (ASFV) on adult and nymphal Ornithodoros moubata Murray (Ixodoidea, Argasidae) ticks were examined. Three groups of ticks were used, an uninfected control group, one group infected with the VIC T90/1 isolate of ASFV and another group infected with the LIV 13/33 isolate of ASFV. Infection with ASFV did not affect the oviposition rates of infected ticks when compared with uninfected ticks. There was no difference between infected and uninfected ticks in progeny hatching rates and first nymphal stage feeding rates. Feeding rates of infected adult ticks were also unaffected. However, a significant increase in mortality rates was observed amongst the adult ticks that fed on an infective bloodmeal compared to ticks fed on an unifected bloodmeal.  相似文献   

5.
6.
We show here that the African swine fever virus (ASFV) protein pE296R, predicted to be a class II apurinic/apyrimidinic (AP) endonuclease, possesses endonucleolytic activity specific for AP sites. Biochemical characterization of the purified recombinant enzyme indicated that the K(m) and catalytic efficiency values for the endonucleolytic reaction are in the range of those reported for Escherichia coli endonuclease IV (endo IV) and human Ape1. In addition to endonuclease activity, the ASFV enzyme has a proofreading 3'-->5' exonuclease activity that is considerably more efficient in the elimination of a mismatch than in that of a correctly paired base. The three-dimensional structure predicted for the pE296R protein underscores the structural similarities between endo IV and the viral protein, supporting a common mechanism for the cleavage reaction. During infection, the protein is expressed at early times and accumulates at later times. The early enzyme is localized in the nucleus and the cytoplasm, while the late protein is found only in the cytoplasm. ASFV carries two other proteins, DNA polymerase X and ligase, that, together with the viral AP endonuclease, could act as a viral base excision repair system to protect the virus genome in the highly oxidative environment of the swine macrophage, the virus host cell. Using an ASFV deletion mutant lacking the E296R gene, we have determined that the viral endonuclease is required for virus growth in macrophages but not in Vero cells. This finding supports the existence of a viral reparative system to maintain virus viability in the infected macrophage.  相似文献   

7.
High-resolution two-dimensional electrophoresis followed by computer analysis has been used to study quantitatively the patterns of protein synthesis produced in porcine alveolar macrophages and in Vero cells infected with African swine fever virus (ASFV). Initially, a protein database for each cell type was constructed. The porcine alveolar macrophage database includes 995 polypeptides (818 acidic, isoelectric focusing (IEF) and 177 basic, nonequilibrium pH gradient electrophoresis (NEPHGE)) whereas the Vero database contains 1,398 polypeptides (1,127 acidic, IEF and 271 basic, NEPHGE). Taking these databases as reference, ASFV highly virulent strain E70 induces 57 acid and 43 basic polypeptides in porcine alveolar macrophages, which account for most of the information content of the virus DNA. The kinetics of synthesis of the virus-induced polypeptides showed the existence of three classes of proteins: one whose synthesis starts early after infection, continues for a period and then switches off; another whose synthesis also starts early but continues for prolonged periods; and a third which requires DNA replication. The attenuated, cell adapted, strain BA71V induces 92 acidic and 37 basic proteins in Vero cells. Significant differences were observed when comparing the patterns of polypeptides induced by the two viral strains. In both cell systems studied, ASFV infection produces a general shutoff of protein synthesis that affects up to 65% of the cellular proteins. Interestingly, 28 proteins of porcine alveolar macrophages and 48 proteins of Vero cells are stimulated at least two times by ASFV infection.  相似文献   

8.
Assaying samples for infectious virus is more difficult when the sample is toxic to cells used in the assay, e.g. with samples of infected pig slurry. Various techniques were compared for the recovery of African swine fever virus (ASFV) and swine vesicular disease virus (SVDV) in pig slurry. Extraction with Freon led to 80-100% recovery of SVDV added to pig slurry. The assay sensitivity enabled undiluted, centrifuged sample to be put directly onto monolayers of IB-RS2 cells, allowing a minimum detection level of 100.7 pfu ml-1. ASFV was difficult to recover intact, and the best technique allowed a recovery of 60% with a minimum detectable level of 101.8 HAD50 ml-1, due to toxicity to the cells at low sample dilutions. Extraction with the addition of an equal volume of ox serum to inoculated slurry was best at recovering ASFV. Poor recoveries with the other techniques may have been due to the inactivation of the virus while in the slurry rather than as a result of the inability of the method to extract ASFV.  相似文献   

9.
Fluorescent activated cell sorter (FACS) analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus) and Vero cells (green monkey kidney). Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML). FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+) are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.  相似文献   

10.
11.
An African swine fever virus gene with homology to DNA ligases.   总被引:4,自引:4,他引:0       下载免费PDF全文
Sequence analysis of the SalI g region of the genome of a virulent isolate of ASFV (Malawi Lil 20/1) has revealed an open reading frame with the potential to encode a 48 kilodalton (kD) polypeptide which has significant homology with eukaryotic and prokaryotic DNA ligases. This ASFV encoded gene also contains the putative active site region of DNA ligases including the lysine residue which is necessary for enzyme-adenylate adduct formation, but lacks the C-terminal basic region conserved in other eukaryotic DNA ligases. A novel [32P]-labelled potential DNA ligase-adenylate adduct of M(r) 45 kD was observed upon incubation of ASFV infected cell cytoplasmic extracts with alpha-[32P]-ATP and subsequent analysis of products by SDS/PAGE. These data together suggest that ASFV encodes its own DNA ligase.  相似文献   

12.
The DP71L protein of African swine fever virus (ASFV) shares sequence similarity with the herpes simplex virus ICP34.5 protein over a C-terminal domain. We showed that the catalytic subunit of protein phosphatase 1 (PP1) interacts specifically with the ASFV DP71L protein in a yeast two-hybrid screen. The chimeric full-length DP71L protein, from ASFV strain Badajoz 71 (BA71V), fused to glutathione S-transferase (DP71L-GST) was expressed in Escherichia coli and shown to bind specifically to the PP1-alpha catalytic subunit expressed as a histidine fusion protein (6xHis-PP1alpha) in E. coli. The functional effects of this interaction were investigated by measuring the levels of PP1 and PP2A in ASFV-infected Vero cells. This showed that infection with wild-type ASFV strain BA71V activated PP1 between two- and threefold over that of mock-infected cells. This activation did not occur in cells infected with the BA71V isolate in which the DP71L gene had been deleted, suggesting that expression of DP71L leads to PP1 activation. In contrast, no effect was observed on the activity of PP2A following ASFV infection. We showed that infection of cells with wild-type BA71V virus resulted in decreased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha). ICP34.5 recruits PP1 to dephosphorylate the alpha subunit of eukaryotic translational initiation factor 2 (also known as eIF-2alpha); possibly the ASFV DP71L protein has a similar function.  相似文献   

13.
The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.  相似文献   

14.
15.
Recently, we reported that African swine fever virus (ASFV) multigene family (MGF) 360 and 530 genes are significant swine macrophage host range determinants that function by promoting infected-cell survival. To examine the function of these genes in ASFV's arthropod host, Ornithodoros porcinus porcinus, an MGF360/530 gene deletion mutant (Pr4Delta35) was constructed from an ASFV isolate of tick origin, Pr4. Pr4Delta35 exhibited a significant growth defect in ticks. The deletion of six MGF360 and two MGF530 genes from Pr4 markedly reduced viral replication in infected ticks 100- to 1,000-fold. To define the minimal set of MGF360/530 genes required for tick host range, additional gene deletion mutants lacking individual or multiple MGF genes were constructed. The deletion mutant Pr4Delta3-C2, which lacked three MGF360 genes (3HL, 3Il, and 3LL), exhibited reduced viral growth in ticks. Pr4Delta3-C2 virus titers in ticks were significantly reduced 100- to 1,000-fold compared to control values at various times postinfection. In contrast to the parental virus, with which high levels of virus replication were observed in the tissues of infected adults, Pr4Delta3-C2 replication was not detected in the midgut, hemolymph, salivary gland, coxal gland, or reproductive organs at 15 weeks postinfection. These data indicate that ASFV MGF360 genes are significant tick host range determinants and that they are required for efficient virus replication and generalization of infection. The impaired virus replication of Pr4Delta3-C2 in the tick midgut likely accounts for the absence of the generalized infection that is necessary for the natural transmission of virus from ticks to pigs.  相似文献   

16.
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.  相似文献   

17.
African swine fever virus (ASFV) is a large DNA virus that assembles in perinuclear viral factories located close to the microtubule organizing center. In this study, we have investigated the mechanism by which ASFV reaches the cell surface from the site of assembly. Immunofluorescence microscopy revealed that at 16 h postinfection, mature virions were aligned along microtubules. Furthermore, virus movement to the cell periphery was inhibited when microtubules were depolymerized by nocodazole. In addition, ASFV infection resulted in the increased acetylation of microtubules as well as their protection against depolymerization by nocodazole. Immunofluorescence microscopy showed that conventional kinesin was recruited to virus factories and to a large fraction of virus particles in the cytoplasm. Consistent with a role for conventional kinesin during ASFV egress to the cell periphery, overexpression of the cargo-binding domain of the kinesin light chain severely inhibited the movement of particles to the plasma membrane. Based on our observations, we propose that ASFV is recognized as cargo by conventional kinesin and uses this plus-end microtubule motor to move from perinuclear assembly sites to the plasma membrane.  相似文献   

18.
African swine fever virus (ASFV) infection leads to rearrangement of vimentin into a cage surrounding virus factories. Vimentin rearrangement in cells generally involves phosphorylation of N-terminal domains of vimentin by cellular kinases to facilitate disassembly and transport of vimentin filaments on microtubules. Here, we demonstrate that the first stage in vimentin rearrangement during ASFV infection involves a microtubule-dependent concentration of vimentin into an "aster" within virus assembly sites located close to the microtubule organizing center. The aster may play a structural role early during the formation of the factory. Conversion of the aster into a cage required ASFV DNA replication. Interestingly, viral DNA replication also resulted in the activation of calcium calmodulin-dependent protein kinase II (CaM kinase II) and phosphorylation of the N-terminal domain of vimentin on serine 82. Immunostaining showed that vimentin within the cage was phosphorylated on serine 82. Significantly, both viral DNA replication and Ser 82 phosphorylation were blocked by KN93, an inhibitor of CaM kinase II, suggesting a link between CaM kinase II activation, DNA replication, and late gene expression. Phosphorylation of vimentin on serine 82 may be necessary for cage formation or may simply be a consequence of activation of CaM kinase II by ASFV. The vimentin cage may serve a cytoprotective function and prevent movement of viral components into the cytoplasm and at the same time concentrate late structural proteins at sites of virus assembly.  相似文献   

19.
The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under one-step growth conditions. However, at a low multiplicity of infection, when multiple rounds of replication occur, the growth of the mutant virus is impaired in swine macrophages but not in Vero cells, suggesting that Pol X is needed to repair the accumulated DNA damage. The replication of the mutant virus in Vero cells presents sensitivity to oxidative damage, and mutational analysis of viral DNA shows that deletion of Pol X results in an increase in the mutation frequency in macrophages. Therefore, our data reveal a biological role for ASFV Pol X in the context of the infected cell in the preservation of viral genetic information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号