首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—l -phenylalanine (1 mg/g body wt) or physiological saline (0.9% NaCl) was given intraperitoneally to infant (7-day old), immature (14-day old), and adult (42-day old) rats. The state of ribosomal aggregation was determined in the cerebral postmitochondrial supernatant and purified polyribosome fractions prepared in the presence of rat liver ribonuclease inhibitor. Polyribosomes isolated from cerebral cortices of infant and immature rats 30 or 60 min after administration of phenylalanine were partially disaggregated, whereas the state of aggregation of polyribosomes from mature cerebrum was unchanged. In contrast, little or no evidence of phenylalanine-induced polyribosome disruption was noted in the postmitochondrial supernatant fractions, from which the cerebral polyribosomes were prepared, in any of the animals. Omission of the ribonuclease inhibitor resulted in polyribosome disaggregation in the postmitochondrial supernatant fractions prepared from saline-treated as well as phenylalanine-treated infant rats, but the disruption was more profound in the latter group. Ribonuclease activities in cerebral postmitochondrial supernatant preparations from infant and immature rats were higher than the corresponding values in preparations from adult animals. In addition, the administration of phenylalanine resulted in increases in ribonuclease activities in cerebral postmitochondrial supernatant preparations from the younger animals, but had no effect on these activities in adult animals. These results suggest that alterations in structure and function of polyribosomes from the infant rat cerebrum following a loading dose of phenylalanine were related to exposure of the polyribosomes during isolation to elevated activities of cerebral ribonucleases resulting from this treatment. This hypothesis was supported by the finding that phenylalanine treatment had no effect on the incorporation in vivo of intracisternally-administered radioactive lysine into total, soluble or ribosomal protein of infant cerebrum. However, when cerebral ribosomal RNA was differentially labelled in phenylalanine-treated and saline-treated infant rats by the intracisternal administration of [3H] or [14C]uridine, and polyribosome fractions were then prepared from the pooled cerebral cortices of both groups, radioactive ribosomes derived from saline-treated rats were more highly aggregated than those derived from phenylalanine-treated animals. It is concluded that gross alterations in cerebral polyribosome structure and function do not occur in vivo in young rats given a large amount of phenylalanine intraperitoneally. However, this treatment, in addition to increasing ribonuclease activity in cerebral cell-free preparations, also sensitizes cerebral polyribosomes to subsequent breakdown upon exposure to ribonucleases during isolation.  相似文献   

2.
The defective step which leads human adenovirus type 2 infection of African green monkey kidney cells (clone C14) to be abortive and its complementation in simian virus 40-transformed cells (clone T22) were studied by comparing the synthesis and function of macromolecules in these cell lines. Neither a quantitative nor a qualitative difference was detected in virus DNA replication and in virus mRNA synthesis in these cells, while a definite difference was observed in protein synthesis. The capsid proteins, such as hexon or penton, were synthesized in T22 cells but not in C14 cells. Inability of polyribosomes to synthesize the capsid proteins in C14 cells infected with adenovirus type 2 may not be due to a defect in elongation of nascent polypeptides or their release, since nascent polypeptides pulse-labelled with [3H]leucine were completely released from polyribosomes after the chase. The electrophoretic analysis of proteins synthesized in vitro with polyribosomes from either infected T22 or C14 cells using the pH 5 enzyme and S100 fraction from T22 cells revealed that hexon was synthesized with polyribosomes from T22 cells but not from C14 cells, thereby suggesting that the defect is not ascribed to a component in the pH 5 enzyme and S100 fraction, but resides in polyribosomes. The analysis of late adenovirus mRNA associated with polyribosomes in the infected T22 and C14 cells by hybridization competition or by sedimentation revealed that all the species of virus mRNA were present in the cytoplasm of these cells; however, certain species of virus mRNA larger than 20 S were absent in polyribosomes of the infected C14 cells. Sedimentation analysis of late adenovirus mRNA following separation on poly(U)-Sepharose or by membrane filtration gave the same results. These results suggest that the defect of C14 cells to support growth of adenoviruses is due to the inability of ribosomes to associate with certain species of late virus mRNA to form polyribosomes and suggest that a factor complementing this defect is induced by simian virus 40.  相似文献   

3.
Free and membrane-bound polyribosomes were isolated in an undegraded form from developing maize kernels. Translation of the membrane-bound polyribosomes in vitro produced one main radioactive protein. This protein was soluble in 70% ethanol and had the same mobility in electrophoresis on sodium dodecyl sulfate-gels as a zein standard. The ratio of [14C] leucine to [14C] lysine incorporated into the 70% ethanol extractable protein was similar to the mole fraction ratio of these amino acids in zein. The zein-like protein may represent as much as 50% of the total protein synthesized by the membrane-bound polyribosomes.  相似文献   

4.
Consistent with the previous work by Pestka (Antimicrob. Agents Chemother.5, 255, 1974) on the binding of erythromycin to polyribosomes, we found that erythromycin does not inhibit protein synthesis catalyzed by polyribosomes. This is due to the presence of nascent peptidyl tRNA on the naturally occurring polyribosomes. In a soluble extract from E. coli pretreated to remove the ribosome releasing factor, polyribosomes without nascent polypeptides remain intact and can catalyze protein synthesis in the absence of initiation. In this system erythromycin effectively inhibited protein synthesis. The inhibition by erythromycin was caused by premature release of oligopeptidyl tRNA from polyribosomes.  相似文献   

5.
Polyribosome preparations containing low proportions of monosomes to polyribosomes have been isolated from developing seeds of Glycine max L. Merrill using a high pH-high KCl buffer. The polyribosomes were functional in in vitro protein synthesis reactions using wheat germ 23,000g supernatant preparations. Results of experiments using aurintricarboxylic acid indicated that most or all of the amino acid incorporation in vitro resulted from the completion of nascent polypeptides associated with the isolated polyribosmes. RNA purified from polyribosome preparations by affinity chromatography on oligo(dT)-cellulose was also active in vitro, and had different Mg and K requirements for translation than did the polyribosomes. Translation of oligo(dT)-cellulose-purified mRNA was inhibited by the addition of 7-methylguanosine 5′-phosphate, suggesting that soybean mRNAs are “capped” at their 5′ ends. Some, but not all, of the products of these reactions were identical in electrophoretic mobility to radioactive polypeptides of storage proteins produced in soybean cotyledons grown in culture.  相似文献   

6.
Synthesis of collagen on polyribosomes has been demonstrated in vitro in chick embryo corium by radioisotope incorporation, zone centrifugation through sucrose gradients, and analytical ultracentrifugation. Collagen synthesis was associated with polyribosomes ranging in size, as reflected by their sedimentation constants, from about 180S to approximately 1600S. Most of the newly formed collagen, hydroxyproline, was present on the largest polyribosome aggregates (~ 350–1600S), but small polyribosomes (~180–200S) also contained collagen. On the basis of the proline-14C/hydroxyproline-14C ratios and the disrupting effect of collagenase, the proposal is made that the 350–1600S polyribosomes from this tissue are involved predominantly in collagen synthesis. The large polyribosomes are disrupted extensively by collagenase but only partially by ribonuclease and trypsin. Therefore, it appears that they are stabilized by the interaction of newly forming collagen chains. Evidence is presented consistent with the hypothesis that these large polyribosomes are formed by the aggregation of small polyribosomes (180–200S) through the interaction of collagen polypeptides. It is suggested that these small polyribosomes might be involved in the synthesis of subunits of the collagen alpha chain.  相似文献   

7.
Developing cotyledons of Phaseolus vulgaris L. were labeled for 30 min with [3H] amino acids, homogenized, and the proteins fractionated on sodium dodecylsulfate (SDS) polyacrylamide gels. Fluorographs of these gels showed that the polypeptides of phaseolin, the major reserve protein of P. vulgaris, were synthesized as precursors which could be distinguished from the polypeptides of mature phaseolin by their slightly lower mobility. When extracts of cotyledons labeled for 45 min with [3H] amino acids were fractionated on isopynic sucrose gradients, radioactive phaseolin banded at the same density (1.14 g cm-3) as the endoplasmic reticulum (ER)-marker enzyme NADH-cytochrome c reductase. Fractionation in the presence of 3 mM MgCl2 indicated that the newly-synthesized phaseolin was associated with the rough ER. Pulse-chase experiments showed that phaseolin was transiently associated with the ER, and later accumulated in the protein bodies. Treatment of isolated ER with proteinase K showed that phaseolin polypeptides were degraded only if Triton X-100 was present, indicating that phaseolin was membrane-protected, probably enclosed within the vesicles. ER-associated phaseolin associated to an 18S form at pH 4.5 in the presence of 0.3 M NaCl and 100 mM sodium acetate. The polypeptides of ER-associated phaseolin had a slightly lower mobility on SDS-gels than polypeptides of protein body phaseolin. ER-associated phaseolin had a carbohydrate content of 6.8%, while protein body-derived phaseolin had a carbohydrate content of 6.2%. When cotyledons were labeled simultaneously with [14C] amino acids and [3H] glucosamine or with [14C] amino acids and [3H] mannose, the [3H]/[14C] ratio of ER-derived phaseolin was similar to that of protein body derived phaseolin, indicating that the faster mobility on SDS-gels was not due to the detachment of carbohydrate. Experiments in which the carbohydrate side chains were removed with endoglycosidase H, and the resulting polypeptides subjected to electrophoresis in SDS-gels showed that the differential mobility of the glycopolypeptides of phaseolin resided in their polypeptide chains.  相似文献   

8.
—1. Effects of the administration of phenylalanine to rats on incorporation in vivo or in vitro of [U-14C]glucose into cerebral lipids were studied during the first 5–10 days of postnatal development. In addition, the effects of added phenylalanine and its deaminated metabolites on incorporation of [U-14C]glucose by homogenates into lipids of developing rat brain were investigated. Hyperphenylalaninaemia reduced incorporation both in vivo and in vitro of [U-14C]glucose into cerebral lipids. 2. Phenylalanine or tyrosine added in vitro at concentrations equivalent to those in the brain of the hyperphenylalaninaemic rat (0-1 μmole/ml incubation medium) did not inhibit incorporation of [U-14C)glucose into lipids, although at much higher concentrations of phenylalanine (36 μumoles/ml incubation medium) slight inhibition (10 per cent) of incorporation of [U-14C]glucose into lipids was observed. 3. In contrast, the deaminated metabolites in general exerted greater inhibitory effects at lower concentrations. Phenyllactic acid, in comparison to phenylpyruvic and phenyl-acetic acid, was the most potent inhibitor of the incorporation in vitro of [U-14C]glucose into cerebral lipids. These results indicated that these metabolites of phenylalanine were the more potent inhibitors of cerebral lipid metabolism in immature animals.  相似文献   

9.
Polysomes were isolated from aortas of 17-day-old chick embryos, and the synthesis of the nascent polypeptide chains was completed in vitro. When a mixture of a labeled amino acids found in elastin was used, the major radioactive product obtained was of molecular weight about 70,000 and was similar to elastin by several criteria. The 70,000 molecular weight product was extractable in propanol-butanol, it was not labeled with [35S]methionine, and it was precipitated by antibodies against elastin. Polypeptides larger than 70,000 molecular weight were also synthesized but these larger polypeptides incorporated relatively small amounts of [14C]valine, and they appeared to represent proα chains of procollagen. The results suggest that the major gene product for elastin has a molecular weight of about 70,000.  相似文献   

10.
Abstract— Levels of free amino acids, profiles of polyribosomes, and rates of protein synthesis and degradation were examined in the brains of chicks fed toxic levels of galactose. The content of a number of amino acids were altered; alanine and leucine were most strikingly depressed, whereas levels of aspartate were elevated. Polyribosomal profiles were unaltered. There appeared to be no detrimental effect on protein synthesis as judged by in vivo incorporation of L-[U-14C]leucine and L-[guanidino-14C]arginine. Likewise, the half-lives of proteins, measured by the loss of L-[guanidino-14C]arginine, were similar in experimental and control groups. In contrast, initial rates of incorporation of [3H]glucosamine into glycoproteins were enhanced. The effect was greatest in the microsomal fraction and typically 50 per cent greater than controls. Levels of free glucosamine and protein-bound hexosamine were essentially unaltered in the galactose-fed chicks.  相似文献   

11.
Abstract— A technique for the isolation of pure neuronal perikarya and intact glial cells from cerebral cortex has been developed for routine use. The yield of neuronal perikarya and glial cells was greater from highly immature (5–10 days) rat cerebral cortex than from the cortex of older rats (18–43 days). The perikarya/glia yield ratio decreased with age indicating that, as the glial population matured, the procedure succeeded in isolating a gradually smaller proportion of the existing neurons. The perikarya/glia ratio was highest for the 5-day-old cortex in which no mature glial cells could be identified. After a 10-min pulse in vivo of intrathecally injected [14C]phenylalanine, the specific radioactivity of the neuronal proteins was higher than that of the glial proteins in the 5-, 10- and 18-day-old rat but was lower in the 43-day-old rat. The values for absolute specific radioactivity of the 14C-labelled proteins in both cell types were greater, the younger the brain. The 14C-labelling of neuronal and glial proteins in the 18-day-old rat was assessed in vivo as a function of time by determining the incorporation of [14C]phenylalanine into such proteins at 5, 10, 20 and 45 min after administration of the amino acid. The rate of incorporation of [14C]phenylalanine into the glial cells was faster than into the neurons since higher specific radioactivities of the glial proteins could be achieved at earlier times. Also, a biphasic pattern of 14C-labelling of the glial proteins was noted, suggesting, perhaps, a sequential involvement of the oligodendrocytes and astrocytes. Homogenates of prelabelled neuronal perikarya were fractionated into the nuclear, mitochondrial microsomal and soluble cell sap fractions. In the 18-day-old cerebral cortex, the proteins of the microsomal fraction exhibited the highest specific radioactivity at the end of 10 min, whereas by 20 min proteins of the mitochondrial fraction were most highly labelled. The specific radioactivity of the nuclear proteins increased over the entire 45-min experimental period. On the contrary, the proteins of the soluble cell sap, in which the specific radioactivity was at all times by far the lowest, were maximally labelled by 5 min. Examination of the labelling of the neuronal subcellular fractions as a function of age revealed that at 10 min after administration of [14C]phenylalanine, the specific radioactivities of all 14C-labelled proteins were highest in the youngest (5-day-old) neurons. The proteins of the microsomal fraction were most rapidly labelled at all ages. During this interval the proteins of the soluble cell sap were only moderately labelled in the 5-day-old neurons and were totally unlabelled in the 43-day-old neurons, indicating age-dependent differences in the rate of utilization of the amino acid precursor by the neurons.  相似文献   

12.
Abstract— cell-free amino acid incorporating system from immature rat brain, consisting of ribosomal and soluble fractions, has been investigated for its capacity to incorporate [14C]amino acids into specific soluble proteins that interact with vinblastine sulfate and colchicine. The soluble 14C-labeled proteins formed in the cell-free system during incubation were compared with similar soluble proteins from immature rat brain which had been labeled in vivo by the incorporation of 14C-labeled amino acids. Criteria for the formation of vinblastine-binding, 14C-labeled proteins were: (1) aggregation of 14C-labeled soluble protein by one mm -vinblastine sulfate and (2) immunoprecipitation of 14C-labeled soluble protein by an antiserum against vinblastine sulfate-precipitable material. Criteria for the formation of [3H]colchicine-binding, 14C-labeled protein were based upon: (1) co-precipitation of the 3H-and 14C-labeled materials by vinblastine sulfate and (2) the coincidence of 3H- and 14C-labeled elution peaks from columns of Sephadex G-200, DEAE-Sephadex A-50 and isoelectric focusing. Both in the in vitro and in the in vivo system, 14C-labeled amino acids were incorporated into soluble proteins of the post-microsomal supernatant fraction. Proteins labeled with 14C-labeled amino acids in vitro and in vivo yielded comparable and qualitatively identical results by the criteria tested, including the formation of immunoprecipitates. In the in vitro system, 14C-labeled amino acids were incorporated into protein with a molecular weight of approx 120,000, an isoelectric point of 5.3 and with a chromatographic mobility on Sephadex G-200 which is identical to [3H]colchicine-binding protein. The above experimental results are presumptive evidence for the synthesis of vinblastine-binding and colchicine-binding proteins in the in vitro cell-free system.  相似文献   

13.
Protein synthesis in cultured muscle cells: methylation of nascent proteins   总被引:2,自引:0,他引:2  
Protein methylation was examined in primary cultures of rat leg muscle cells between 7 and 9 days of culture. Methyl[14C]- or [3H]-methionine was introduced into the culture medium and the cells were sampled for radioactive methylated protein residues. Incorporation of the total radioactivity was linear for at least 4 hr after introduction of the methionine label. When labeling was studied for periods between 10–30 min, the methylation of polyribosome-bound, presumably nascent, proteins was unaffected by addition of cycloheximide to the culture medium. The antibiotic, however, inhibited incorporation of methionine, and consequently increased the ratios of the incorporated methylated, to methionine residues and the ratio of ribosome-bound to free radioactivity. The methylated, polyribosome-bound proteins were decreased when puromycin was added to the culture medium. It is proposed that selective methylation of nascent proteins, such as myosin, can begin at the level of polyribosomes and be completed in the cytosol of muscle cells cultured in vitro.  相似文献   

14.
This study investigates the fate of 14C labelled 2,4-D used as a trigger compound during callus induction (dedifferentiation). It also traces the special relationship of 2,4-D with some high molecular weight components in vivo, in which 2,4-D-2-14C was found combined with high molecular weight component-fractions. Nucleic acids showed very low radioactivities, based on MAK column chromatography and centrifugal profiles from sucrose density gradient treatments, but there was no specificity in this radioactive incorporation. Centrifugal profiles and Pronase treatment indicate that protein combines with 2, 4-D-2-14C. These results support the claim for a model of auxin-induced derepression, in which auxin interacts with its binding protein.  相似文献   

15.
The specific activity of leucine in newly synthesized protein was determined by isolating the nascent polypeptides of the growing polypeptide chains. The newt, Triturus viridescens, was labeled in vivo with [3H]leucine. Polysomes were prepared from the livers. Peptidyl-tRNA was released from the polysomes by EDTA, isolated by sucrose gradient and purified on hydroxylapatite. It was then hydrolyzed with HCl and the amino acids were reacted with 14C-labeled 1fluoro-2,4-dinitrobenzene. The specific activity of [3H]leucine was determined from the [14C]dinitrophenyl-[3H]leucine after purification by two-dimensional thin layer chromatography. By this approach we found twofold differences between leucine specific activity in the growing polypeptide chain of free polysomes and that of membrane-bound polysomes. Moreover, we recorded eight to tenfold differences between the specific activity of leucine in peptidyl-tRNA and that in the acid-soluble pool. Our results indicate and define the intracellular compartmentalization of the leucine pool available for protein synthesis.  相似文献   

16.
METABOLISM OF MALONIC ACID IN RAT BRAIN AFTER INTRACEREBRAL INJECTION   总被引:4,自引:4,他引:0  
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

17.
Treatment of rabbit alveolar macrophages with crystalline trypsin (0.04–2 mg/108 cells) inhibits protein synthesis and results in increased leakage of cell proteins. Trypsinization does not significantly decrease cellular DNA content or viability, and it does not increase protein breakdown.Trypsin treatment results in decreased oxidation of [1-14C]glucose and [6-14C]glucose, and also a decrease in ATP content. Trypsinization also causes a depression of net leucine transport and a reduction in the translational activity of polyribosomes.When normal and trypsinized macrophages are preincubated at 37 °C for several hours and then pulse-labelled with radioactive leucine, protein synthesis is stimulated to approximately the same extent in both the control and the enzyme-treated cells. Since the trypsinized cells still exhibit depressed protein synthesis, this suggests that the inhibition cannot be readily reversed.Indirect evidence indicates that the inhibition of protein synthesis is not due to entry of trypsin into the cells and suggests that the inhibition is due to changes in metabolism resulting from the action of the enzyme at the cell surface.  相似文献   

18.
An attempt has been made to identify proteins synthesised during induction of teichoic acid synthesis in Bacillus licheniformis ATCC 9945. The proteins are recognised as those produced on the change from teichuronic acid to teichoic acid synthesis that occurs after the transfer of the bacteria from phosphate-limited to phosphate-rich conditions. B. licheniformis was grown in phosphate-limiting conditions in the presence of threonine to stimulate threonine uptake. The bacteria were then transferred to phosphate-rich conditions and were pulsed-labelled with [14C]threonine during the change to teichoic acid synthesis. All of the proteins were extracted from the cells with sodium dodecyl sulphate and were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Radioactive polypeptides were identified by fluorography of the polyacrylamide gels. The radioactive polypeptides that were formed on change from teichuronic acid to teichoic acid synthesis were compared with the polypeptides present in a membrane sub-fraction that had high teichoic acid-synthesising activity. The labelling of nine polypeptides with [14C]threonine was dependent on new RNA synthesis. Of these nine polypeptides, five were also present in the membrane sub-fraction with the highest teichoic acid-synthesising activity.  相似文献   

19.
The cellular and subcellular events in the anamnestic response were considered. Rabbits previously immunized with key hole limpet hemocyanin (KLH) were given an anamnestic challenge in the hind footpads. The popliteal lymph nodes were removed at intervals after immunization and the following correlated on a temporal basis: the changes in the number and types of cells in the lymph nodes; the formation and regression of ribosomes, polyribosomes, endoplasmic reticulum and Golgi apparatus in plasma cells; the changes in intracellular immunofluorescence for anti-hemocyanin; and, the incorporation of 14C labeled amino acids by lymph node cells into anti-KLH during a brief in vitro culture period. Maximum intracellular fluorescence for anti-KLH and the largest incorporation of 14C labeled amino acids into antibody occurred between the third and fourth day after immunization. During this interval highly differentiated plasma cells were most numerous with respect to the total cellular population. These events took place in a 12 to 24 hour period. This was followed by an abrupt decline in the synthesis of antibody. Coincident with this was a reduction in the number of recognizable plasma cells in the nodes, diminished intracellular fluorescence for anti-KLH and a simplification of the cytoplasm of the plasma cells toward a lymphocytic form.  相似文献   

20.
The viability of the isolated toad brain in an aerated Ringer-like medium has been evaluated by the following criteria: 1) amino acid content before and after incubation; 2) accumulation of amino acids in the incubation medium; 3) a comparison of glucose utilization and [U-14C]glucose metabolism with that occurring in vivo; 4) tissue swelling; and 5) tissue lactate content. On the basis of these criteria, the isolated toad brain, from toads adapted to a fresh-water or a salt-water environment, retains considerable metabolic integrity for at least 2 hr of incubation at 25° C. Specifically, there was no swelling of the tissue, no apparent accumulation of lactate in the tissue, glucose appeared to be utilized at a rate not too different from that calculated for the toad brain in vivo, and the distribution of label from [U-14C]glucose had an overall pattern which resembled that observed in vivo. The tissue levels of amino acids were generally stable in vitro; however, there was a marked decline in the content of aspartate. The accumulation of amino acids in the medium varied considerably from one amino acid to another. Thus, there was very little net efflux of aspartate, GABA, and glutamate from the tissue but considerable net efflux of glutamine. This efflux of amino acids was greater from brains of hyperosmotically adapted toads than from the brains of toads adapted to fresh water by amounts proportional to their initial tissue contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号