首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time hierarchies, arising as a result of interactions between system’s components, represent a ubiquitous property of dynamical biological systems. In addition, biological systems have been attributed switch-like properties modulating the response to various stimuli across different organisms and environmental conditions. Therefore, establishing the interplay between these features of system dynamics renders itself a challenging question of practical interest in biology. Existing methods are suitable for systems with one stable steady state employed as a well-defined reference. In such systems, the characterization of the time hierarchies has already been used for determining the components that contribute to the dynamics of biological systems. However, the application of these methods to bistable nonlinear systems is impeded due to their inherent dependence on the reference state, which in this case is no longer unique. Here, we extend the applicability of the reference-state analysis by proposing, analyzing, and applying a novel method, which allows investigation of the time hierarchies in systems exhibiting bistability. The proposed method is in turn used in identifying the components, other than reactions, which determine the systemic dynamical properties. We demonstrate that in biological systems of varying levels of complexity and spanning different biological levels, the method can be effectively employed for model simplification while ensuring preservation of qualitative dynamical properties (i.e., bistability). Finally, by establishing a connection between techniques from nonlinear dynamics and multivariate statistics, the proposed approach provides the basis for extending reference-based analysis to bistable systems.  相似文献   

2.
An integral equation analysis of generaln compartment steady state systems imbedded in static media of arbitrary complexity has been developed. A set of initial entry functions can be found which serve to determine a corresponding set of partitioned initial entry functions. The partitioned functions, in turn, can be used to predict the probabilities and time courses of various transport histories and to determine all steady state rates of flow between measured compartments. The method is quite general, being completely applicable, for example, to closed systems, to cyclic systems and to systems in which relatively rapid (but finite) exchange between compartments occurs.  相似文献   

3.
4.
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a “jump-growth” equation, a first order approximation which is the widely used McKendrick–von Foerster equation, and a second order approximation which is the McKendrick–von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick–von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick–von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.  相似文献   

5.

Background

Complete analysis of single substrate enzyme-catalyzed reactions has required a separate use of two distinct approaches. Steady state approximations are employed to obtain substrate affinity and initial velocity information. Alternatively, first order exponential decay models permit simulation of the time course data for the reactions. Attempts to use integrals of steady state equations to describe reaction time courses have so far met with little success.

Methods

Here we use equations based on steady state approximations to directly model time course plots.

Results

Testing these expressions with the enzyme β-galactosidase, which adheres to classical Michaelis–Menten kinetics, produced a good fit between observed and calculated values.

General significance

This study indicates that, in addition to providing information on initial kinetic parameters, steady state approximations can be employed to directly model time course kinetics.Integrated forms of the Michaelis–Menten equation have previously been reported in the literature. Here we describe a method to directly apply steady state approximations to time course analysis for predicting product formation and simultaneously obtain multiple kinetic parameters.  相似文献   

6.
7.
Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.  相似文献   

8.
A regime is proposed for the design of coupled enzyme assays in which auxiliary enzymes are added at concentrations proportional to their Km values. Under these conditions it is possible to calculate the complete time course of the assay including the time required for the system to approach its steady state. The consequence of increasing the number of coupling enzymes is shown to be a considerable decrease in time required to reach the steady state provided that the overall transient time remains the same. The method is extended to the general consideration of pathways and shows that pathways of the same length exhibit identical temporal responses provided that the units of concentration and time used are based on the steady-state concentration of intermediates and the transient time respectively. An unexpected finding is that increasing the number of intermediates in a pathway can decrease the time required to enter a steady state.  相似文献   

9.
A vast number of biologically important processes are based upon bimolecular systems. In these systems intermediate complexes are formed. Bimolecular systems in which no complex-complex interactions occur are called linear systems of complexes. A definition and some characteristic properties of these systems are given here. There may exist a contradiction of Onsager's principle of detailed balancing in these systems; however, no principal differences are found between the steady state behavior of an open system and that of a closed system. It is shown that the steady state behavior of a linear system of complexes of arbitrary complexity has some similarities with the steady state behavior of a simple bimolecular system, e.g., Michaelis-Menten enzymatic reaction. Multiplicity of action of the substances participating in biomolecular processes may produce some qualitative differences in the steady state behavior of the system.  相似文献   

10.
Mathematical methods of biochemical pathway analysis are rapidly maturing to a point where it is possible to provide objective rationale for the natural design of metabolic systems and where it is becoming feasible to manipulate these systems based on model predictions, for instance, with the goal of optimizing the yield of a desired microbial product. So far, theory-based metabolic optimization techniques have mostly been applied to steady-state conditions or the minimization of transition time, using either linear stoichiometric models or fully kinetic models within biochemical systems theory (BST). This article addresses the related problem of controllability, where the task is to steer a non-linear biochemical system, within a given time period, from an initial state to some target state, which may or may not be a steady state. For this purpose, BST models in S-system form are transformed into affine non-linear control systems, which are subjected to an exact feedback linearization that permits controllability through independent variables. The method is exemplified with a small glycolytic-glycogenolytic pathway that had been analyzed previously by several other authors in different contexts.  相似文献   

11.
Homeostatic control of cell volume and intracellular electrolyte content is a fundamental problem in physiology and is central to the functioning of epithelial systems. These physiological processes are modeled using pump-leak models, a system of differential algebraic equations that describes the balance of ions and water flowing across the cell membrane. Despite their widespread use, very little is known about their mathematical properties. Here, we establish analytical results on the existence and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel currents have a linear current-voltage relationship, we show that there is at most one steady state, and that the steady state is globally asymptotically stable. If there are no steady states, the cell volume tends to infinity with time. When minimal assumptions are placed on the properties of ion channel currents, we show that there is an asymptotically stable steady state so long as the pump current is not too large. The key analytical tool is a free energy relation satisfied by a general class of pump-leak models, which can be used as a Lyapunov function to study stability.  相似文献   

12.
Within the last decades NMR spectroscopy has undergone tremendous development and has become a powerful analytical tool for the investigation of intracellular flux distributions in biochemical networks using (13)C-labeled substrates. Not only are the experiments much easier to conduct than experiments employing radioactive tracer elements, but NMR spectroscopy also provides additional information on the labeling pattern of the metabolites. Whereas the maximum amount of information obtainable with (14)C-labeled substrates is the fractional enrichment in the individual carbon atom positions, NMR spectroscopy can also provide information on the degree of labeling at neighboring carbon atom positions by analyzing multiplet patterns in NMR spectra or using 2-dimensional NMR spectra. It is possible to quantify the mole fractions of molecules that show a specific labeling pattern, i.e., information of the isotopomer distribution in metabolite pools can be obtained. The isotopomer distribution is the maximum amount of information that in theory can be obtained from (13)C-tracer studies. The wealth of information contained in NMR spectra frequently leads to overdetermined algebraic systems. Consequently, fluxes must be estimated by nonlinear least squares analysis, in which experimental labeling data is compared with simulated steady state isotopomer distributions. Hence, mathematical models are required to compute the steady state isotopomer distribution as a function of a given set of steady state fluxes. Because 2(n) possible labeling patterns exist in a molecule of n carbon atoms, and each pattern corresponds to a separate state in the isotopomer model, these models are inherently complex. Model complexity, so far, has restricted usage of isotopomer information to relatively small metabolic networks. A general methodology for the formulation of isotopomer models is described. The model complexity of isotopomer models is reduced to that of classical metabolic models by expressing the 2(n) isotopomer mass balances of a metabolite pool in a single matrix equation. Using this approach an isotopomer model has been implemented that describes label distribution in primary carbon metabolism, i.e., in a metabolic network including the Embden-Meyerhof-Parnas and pentose phosphate pathway, the tricarboxylic acid cycle, and selected anaplerotic reaction sequences. The model calculates the steady state label distribution in all metabolite pools as a function of the steady state fluxes and is applied to demonstrate the effect of selected anaplerotic fluxes on the labeling pattern of the pathway intermediates. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:831-840, 1997.  相似文献   

13.
Homeostatic control of cell volume and intracellular electrolyte content is a fundamental problem in physiology and is central to the functioning of epithelial systems. These physiological processes are modeled using pump-leak models, a system of differential algebraic equations that describes the balance of ions and water flowing across the cell membrane. Despite their widespread use, very little is known about their mathematical properties. Here, we establish analytical results on the existence and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel currents have a linear current-voltage relationship, we show that there is at most one steady state, and that the steady state is globally asymptotically stable. If there are no steady states, the cell volume tends to infinity with time. When minimal assumptions are placed on the properties of ion channel currents, we show that there is an asymptotically stable steady state so long as the pump current is not too large. The key analytical tool is a free energy relation satisfied by a general class of pump-leak models, which can be used as a Lyapunov function to study stability.  相似文献   

14.
We present here a simple diagrammatic approach for the time evolution of the fluctuations in metabolite concentrations around the steady state. A fluctuation correlation matrix is introduced to characterise the response in the concentrations of metabolites to a singular initial fluctuation in one of the metabolites. We show how the temporal evolution of the correlation matrix can be represented in the form of a series with individual terms corresponding to pathways on a metabolic graph. The basic properties of such graphs are studied and it is shown how each term in the series can be evaluated. A Monte-Carlo procedure is outlined to calculate the fluctuation correlation matrix. We discuss various properties of the graphical representation and discuss links to information theory that arise from it.  相似文献   

15.
The steady state kinetics of some typical catalytic systems of biological importance have been formulated. The conditions for the existence of a maximum or limiting velocity are examined and discussed. In particular it is shown that the limiting velocity for a given component is simply the rate expression for a given number of steps of theoverall process; from the general condition for a limiting velocity these steps may be specified. The stringency of the conditions which must be imposed upon the steady state solution in order that it may be assumed that one or more steps are essentially at equilibrium is pointed out. The application of the general method to coupled or branched systems and to cyclic systems is briefly discussed. This work was done while the author was a Senior Research Fellow of the National Institute of Health.  相似文献   

16.
The area and the first time moment of tracer kinetic data on steady state systems contains information on flows and volumes of distribution in the system. A simple and general method of obtaining such information is given. The method consists of equating the ratio of the time integrals of appropriate stimulus function and response function in an actually performed finite amount tracer experiment to the ratio of stimulus and response that would exist in the tracer steady state. The generality of the method is illustrated by deriving the volume of osmotically exchangeable water in an organ from measurement of its transient bulk water exchange during a small osmotic perturbation.  相似文献   

17.
The application of mathematical theories to understanding the behaviour of complex biochemical systems is reviewed. Key aspects of behaviour are identified as the flux through particular pathways in a steady state, the nature and stability of dynamical states, and the thermodynamic properties of systems. The first of these is dealt primarily in theories of metabolic control, and metabolic control analysis (MCA) is an important example. The valid application of this theory is limited to steady-state systems, and the cases where the essential features of control can be derived from calibration experiments which perturb the state of the system by a sufficiently small amount from its operating point. In practice, time-dependent systems exist, it is not always possible to know a priori whether applied perturbations are sufficiently small, and important features of control may lie farther from the operating point than the application of the theory permits. The nature and stability of dynamical and thermodynamical states is beyond the scope of MCA. To understand the significance of these limitations fully, and to address the dynamical and thermodynamical properties, more complete theories are required. Non-linear systems theory offers the possibility of studying important questions regarding control of steady and dynamical states. It can also link to thermodynamic properties of the system including the energetic efficiency of particular pathways. However, its application requires a more detailed characterisation of the system under study. This extra detail may be an essential feature of the study of non-equilibrium states in general, and non-ideal pathways in particular. Progress requires considerably more widespread integration of theoretical and experimental approaches than currently exists.  相似文献   

18.
High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co-immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co-immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co-immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results.  相似文献   

19.
Transition time of metabolic systems in introduced as a suitable optimization criterion for biotechnological processes in which it is desirable to reduce the lag time and minimize the mass contained within the system. Lag time is the time needed for the system to attain the steady state. Results obtained from the sensitivity analysis of this steady state response are presented within the metabolic control analysis and applied to 3 case studies. In all of them the information provided by the transition time control profile allows the implementation of a strategy for biotechnological manipulations aimed at the improvement of the process. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
The goal of generalized logical analysis is to model complex biological systems, especially so-called regulatory systems, such as genetic networks. This theory is mainly characterized by its capacity to find all the steady states of a given system and the functional positive and negative circuits, which generate multistationarity and a cycle in the state sequence graph, respectively. So far, this has been achieved by exhaustive enumeration, which severely limits the size of the systems that can be analysed. In this paper, we introduce a mathematical function, called image function, which allows the calculation of the value of the logical parameter associated with a logical variable depending on the state of the system. Thus the state table of the system is represented analytically. We then show how all steady states can be derived as solutions to a system of steady-state equations. Constraint programming, a recent method for solving constraint satisfaction problems, is applied for that purpose. To illustrate the potential of our approach, we present results from computer experiments carried out on very large randomly-generated systems (graphs) with hundreds, or even thousands, of interacting components, and show that these systems can be solved using moderate computing time. Moreover, we illustrate the approach through two published applications, one of which concerns the computation times of all steady states for a large genetic network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号