首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.  相似文献   

3.
We present here the 2.3-A crystal structure of the Escherichia coli YdiB protein, an orthologue of shikimate 5-dehydrogenase. This enzyme catalyzes the reduction of 3-dehydroshikimate to shikimate as part of the shikimate pathway, which is absent in mammals but required for the de novo synthesis of aromatic amino acids, quinones, and folate in many other organisms. In this context, the shikimate pathway has been promoted as a target for the development of antimicrobial agents. The crystal structure of YdiB shows that the protomer contains two alpha/beta domains connected by two alpha-helices, with the N-terminal domain being novel and the C-terminal domain being a Rossmann fold. The NAD+ cofactor, which co-purified with the enzyme, is bound to the Rossmann domain in an elongated fashion with the nicotinamide ring in the pro-R conformation. Its binding site contains several unusual features, including a cysteine residue in close apposition to the nicotinamide ring and a clamp over the ribose of the adenosine moiety formed by phenylalanine and lysine residues. The structure explains the specificity for NAD versus NADP in different members of the shikimate dehydrogenase family on the basis of variations in the amino acid identity of several other residues in the vicinity of this ribose group. A cavity lined by residues that are 100% conserved among all shikimate dehydrogenases is found between the two domains of YdiB, in close proximity to the hydride acceptor site on the nicotinamide ring. Shikimate was modeled into this site in a geometry such that all of its heteroatoms form high quality hydrogen bonds with these invariant residues. Their strong conservation in all orthologues supports the possibility of developing broad spectrum inhibitors of this enzyme. The nature and disposition of the active site residues suggest a novel reaction mechanism in which an aspartate acts as the general acid/base catalyst during the hydride transfer reaction.  相似文献   

4.
The purification of shikimate dehydrogenase from Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
A procedure was developed for the purification of shikimate dehydrogenase from Escherichia coli. Homogeneous enzyme with specific activity 1100 units/mg of protein was obtained in 21% overall yield. The subunit Mr estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate was 32 000. The native Mr, estimated by gel-permeation chromatography on a TSK G2000SW column, was also 32 000. E. coli shikimate dehydrogenase is therefore a monomeric NADP-linked dehydrogenase.  相似文献   

5.
Combinatorial overexpression of aromatic amino acid biosynthesis (AAAB) genes in the L-tyrosine producing Escherichia coli strains T1 and T2 was employed to search for AAAB reactions limiting L-tyrosine production. All AAAB genes except aroG and tyrA, which were substituted by their feedback resistant derivatives in the host strains, were cloned and overexpressed. A total of 72 different strains overexpressing various AAAB gene combinations were generated and from those strains with improved phenotype, enzymatic bottlenecks of the AAAB pathway could be inferred. The two major gene overexpression targets for increased L-tyrosine production in E. coli were ydiB and aroK, coding for a shikimate dehydrogenase and a shikimate kinase, respectively, and the combination of ydiB and aroK for overexpression resulted in the best L-tyrosine producing strains in this study, yielding 45% for strain T1 and 26% for strain T2, respectively, higher L-tyrosine titers. Interestingly, overexpression studies with combinations of more than one gene revealed that new gene targets could be identified when overexpessed together with other genes but not alone as single gene overexpression. For example, tyrB encoding the last enzyme of the AAAB pathway, an aromatic amino acid transaminase, improved L-tyrosine production significantly when co-overexpressed together with ydiB or aroK, but not when overexpressed alone. It is also noteworthy that E. coli T1, which generally yielded less L-tyrosine, was amenable to greater improvements than strain T2, i.e. E. coli T1 exhibited generally more space for phenotype improvement.  相似文献   

6.
7.
Starvation of cells of Escherichia coli K-12 for the aromatic amino acids results in an increased rate of synthesis of shikimate kinase activity. The two controlling amino acids are tyrosine and tryptophan, and starvation for both results in derepression. The product of the regulator gene tyrR also participates in this control, and shikimate kinase synthesis was depressed in tyrR mutants. Chromatography of cell extracts on diethylaminoethyl-Sephadex allowed partial separation of two shikimate kinase enzymes and demonstrated that only one of these subject to specific repression control involving tyrR. By contrast, chromatography of cell extracts with G-75 or G-200 columns revealed a singl-molecular-weight species of shikimate kinase activity with an apparent molecular weight of 20,000. The levels of shikimate kinase in a series of partial diploid strains indicated that aroL, the structural gene for the tyrR-controlled shikimate kinase enzyme, is located on the E. coli chromosome between the structural genes proC and purE. By means of localized mutagenesis, an aroL mutant of E. coli was isolated. The mutant was an aromatic prototroph and, by the criterion of column chromatography, appeared to have only a single functional species of shikimate kinase enzyme.  相似文献   

8.
Mecillinam, a beta-lactam antibiotic specific to penicillin-binding protein 2 (PBP 2) in Escherichia coli, blocks cell wall elongation and, indirectly, cell division, but its lethality can be overcome by increased levels of ppGpp, the nucleotide effector of the stringent response. We have subjected an E. coli K-12 strain to random insertional mutagenesis with a mini-Tn10 element. One insertion, which was found to confer resistance to mecillinam in relA+ and relA strains, was mapped at 75.5 min on the E. coli map and was located between the promoters and the coding sequence of the aroK gene, which codes for shikimate kinase 1, one of two E. coli shikimate kinases, both of which are involved in aromatic amino acid biosynthesis. The mecillinam resistance conferred by the insertion was abolished in a delta relA delta spoT strain completely lacking ppGpp, and it thus depends on the presence of ppGpp. Furthermore, the insertion increased the ppGpp pool approximately twofold in a relA+ strain. However, this increase was not observed in relA strains, although the insertion still conferred mecillinam resistance in these backgrounds, showing that mecillinam resistance is not due to an increased ppGpp pool. The resistance was also abolished in an ftsZ84(Ts) strain under semipermissive conditions, and the aroK::mini-Tn10 allele partially suppressed ftsZ84(Ts); however, it did not increase the concentration of the FtsZ cell division protein. The insertion greatly decreased or abolished the shikimate kinase activity of AroK in vivo and in vitro. The two shikimate kinases of E. coli are not equivalent; the loss of AroK confers mecillinam resistance, whereas the loss of Arol, does not. Furthermore, the ability of the aroK mutation to confer mecillinam resistance is shown to be independent of polar effects on operon expression and of effects on the availability of aromatic amino acids or shikimic acid. Instead, we conclude that the AroK protein has a second activity, possibly related to cell division regulation, which confers mecillinam sensitivity. We were able to separate the AroK activities mutationally with an aroK mutant allele lacking shikimate kinase activity but still able to confer mecillinam sensitivity.  相似文献   

9.
Auxotrophic mutants of Escherichia coli W or K12 blocked before shikimic acid in the aromatic biosynthetic pathway grew poorly on shikimic acid as sole aromatic supplement. This poor growth response was correlated with a relatively poor ability to transport shikimic acid. If citrate was present in the growth medium (as it is in some commonly used basal media) the growth of some of the E. coli K12 mutants on shikimate was further reduced. Mutants were derived from pre-shikimate auxotrophs which grew rapidly on media containing shikimic acid. These derivatives all had an increased ability to transport shikimic acid. Thus, it is proposed that the growth on shikimate observed in the parent cells is restricted by their relatively poor uptake of shikimate from the medium and that this restriction may be removed by a mutation which enhances shikimate transport. Transduction analysis of the mutations which enhanced utilization and transport of shikimic acid by E. coli K12 strains indicated at least two classes. Class 1 was about 20% cotransduced with the histidine region of the E. coli K12 chromosome and appeared to be coincident with a known shikimate transport locus, shiA. Class 2 was not cotransduced with his. The locus (or loci) of this class is unknown. Kinetic measurements suggested that both classes had shikimate uptake systems derived from the wild-type system. Two class 1 mutants had increased levels of otherwise unaltered wild-type transport while one class 2 mutant had an altered Michaelis constant (Km) for shikimate transport.  相似文献   

10.
Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is considered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for alpha-helix, beta-sheet, beta-turn, and random coil were 29.2 %, 9.3 %, 32.7 %, and 28.8 %, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature 63(o)C. The apparent Michaelis constant for shikimic acid and NADP(+) were calculated to be about 29.5 microM and 63 microM. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of NADP(+) with an enzyme turnover number of 399 s(-1). Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.  相似文献   

11.
Shikimate dehydrogenase catalyzes the fourth step of the shikimate pathway, the essential route for the biosynthesis of aromatic compounds in plants and microorganisms. Absent in metazoans, this pathway is an attractive target for nontoxic herbicides and drugs. Escherichia coli expresses two shikimate dehydrogenase paralogs, the NADP-specific AroE and a putative enzyme YdiB. Here we characterize YdiB as a dual specificity quinate/shikimate dehydrogenase that utilizes either NAD or NADP as a cofactor. Structures of AroE and YdiB with bound cofactors were determined at 1.5 and 2.5 A resolution, respectively. Both enzymes display a similar architecture with two alpha/beta domains separated by a wide cleft. Comparison of their dinucleotide-binding domains reveals the molecular basis for cofactor specificity. Independent molecules display conformational flexibility suggesting that a switch between open and closed conformations occurs upon substrate binding. Sequence analysis and structural comparison led us to propose the catalytic machinery and a model for 3-dehydroshikimate recognition. Furthermore, we discuss the evolutionary and metabolic implications of the presence of two shikimate dehydrogenases in E. coli and other organisms.  相似文献   

12.
In plants, the shikimate pathway occurs in the plastid and leads to the biosynthesis of aromatic amino acids. The bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHD/SHD) catalyses the conversion of dehydroquinate into shikimate. Expression of NtDHD/SHD was suppressed by RNAi in transgenic tobacco plants. Transgenic lines with <40% of wild-type activity displayed severe growth retardation and reduced content of aromatic amino acids and downstream products such as cholorogenic acid and lignin. Dehydroquinate, the substrate of the enzyme, accumulated. However, unexpectedly, so did the product, shikimate. To exclude that this finding is due to developmental differences between wild-type and transgenic plants, the RNAi approach was additionally carried out using a chemically inducible promoter. This approach revealed that the accumulation of shikimate was a direct effect of the reduced activity of NtDHD/SHD with a gradual accumulation of both dehydroquinate and shikimate following induction of gene silencing. As an explanation for these findings the existence of a parallel extra-plastidic shikimate pathway into which dehydroquinate is diverted is proposed. Consistent with this notion was the identification of a second DHD/SHD gene in tobacco (NtDHD/SHD-2) that lacked a plastidic targeting sequence. Expression of an NtDHD/SHD-2-GFP fusion revealed that the NtDHD/SHD-2 protein is exclusively cytosolic and is capable of shikimate biosynthesis. However, given the fact that this cytosolic shikimate synthesis cannot complement loss of the plastidial pathway it appears likely that the role of the cytosolic DHD/SHD in vivo is different from that of the plastidial enzyme. These data are discussed in the context of current models of plant intermediary metabolism.  相似文献   

13.
Tuberculosis (TB) remains the leading cause of mortality due to a single bacterial pathogen, Mycobacterium tuberculosis. The reemergence of TB as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, the proliferation of multi-drug-resistant strains (MDR-TB) and, more recently, of extensively drug resistant isolates (XDR-TB) have created a need for the development of new antimycobacterial agents. Amongst the several proteins and/or enzymes to be studied as potential targets to develop novel drugs against M. tuberculosis, the enzymes of the shikimate pathway are attractive targets because they are essential in algae, higher plants, bacteria, and fungi, but absent from mammals. The mycobacterial shikimate pathway leads to the biosynthesis of chorismate, which is a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Here we report the structural studies by homology modeling and circular dichroism spectroscopy of the shikimate dehydrogenase from M. tuberculosis (MtSDH), which catalyses the fourth step of the shikimate pathway. Our structural models show that the MtSDH has similar structure to other shikimate dehydrogenase structures previously reported either in presence or absence of NADP, despite the low amino acid sequence identity. The circular dichroism spectra corroborate the secondary structure content observed in the MtSDH models developed. The enzyme was stable up to 50 degrees C presenting a cooperative unfolding profile with the midpoint of the unfolding temperature value of approximately 63-64 degrees C, as observed in the unfolding experiment followed by circular dichroism. Our MtSDH structural models and circular dichroism data showed small conformational changes induced by NADP binding. We hope that the data presented here will assist the rational design of antitubercular agents.  相似文献   

14.
The primary structure of Escherichia coli L-threonine dehydrogenase   总被引:2,自引:0,他引:2  
The complete primary structures of Escherichia coli L-threonine dehydrogenase has been deduced by sequencing the cloned tdh gene. The primary structure so determined agrees with results obtained independently for the amino acid composition, the N-terminal amino acid sequence (20 residues), and a short sequence at the end of an internal peptide of the purified enzyme. The presence of a predicted Asp-Pro bond at residues 148 and 149 was confirmed by treatment of purified threonine dehydrogenase with dilute acid and subsequent analysis of the resulting cleavage products. The primary structure of L-threonine dehydrogenase from E. coli has been examined for possible homology to other NAD+-dependent dehydrogenases; indications are that this enzyme is a member of the zinc-containing long-chain alcohol/polyol dehydrogenase family.  相似文献   

15.
16.
Glucose pulse experiments were performed to elucidate their effects on the carbon flux into the aromatic amino acid pathway in different Escherichia coli strains. Using a 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP, aroB(-))-producing strain, a fed-batch fermentation strategy specialized for glucose pulse experiments was developed and further applied for 3-dehydroshikimate (DHS, aroE(-))- and shikimate 3-phosphate (S3P, aroA(-))-producing E. coli strains. The strains overexpress a feedback-resistant DAHP synthase and additional enzymes to prevent rate-limiting steps in the aromatic amino acid pathway. Changes of carbon flux into the aromatic amino acid pathway were determined via extracellular metabolite accumulations using (1)H NMR and HPLC measurements. As an important result, a close relationship between pulse intensity and aromatic metabolite formation rates was identified. The more downstream an aromatic pathway intermediate was located, the stronger the glucose pulse intensity had to be in order to detect significant changes in product formation. However, with the experimental conditions chosen, changes after pulse were detected even for shikimate 3-phosphate, the most downstream accumulating metabolite of this experimental series. Hence glucose pulse experiments are assumed to be a promising tool even for the analysis of final pathway products such as, for example, L-phenylalanine.  相似文献   

17.
Different glucose transport systems are examined for their impact on phosphoenolpyruvate availability as reflected by the yields of 3-dehydroshikimic acid and byproducts 3-deoxy-d-arabino-heptulosonic acid, 3-dehydroquinic acid, and gallic acid synthesized by Escherichia coli from glucose. 3-Dehydroshikimic acid is an advanced shikimate pathway intermediate in the syntheses of a spectrum of commodity, pseudocommodity, and fine chemicals. All constructs carried plasmid aroF(FBR) and tktA inserts encoding, respectively, a feedback-insensitive isozyme of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase and transketolase. Reliance on the native E. coli phosphoenolpyruvate:carbohydrate phosphotransferase system for glucose transport led in 48 h to the synthesis of 3-dehydroshikimic acid (49 g/L) and shikimate pathway byproducts in a total yield of 33% (mol/mol). Use of heterologously expressed Zymomonas mobilis glf-encoded glucose facilitator and glk-encoded glucokinase resulted in the synthesis in 48 h of 3-dehydroshikimic acid (60 g/L) and shikimate pathway byproducts in a total yield of 41% (mol/mol). Recruitment of native E. coli galP-encoded galactose permease for glucose transport required 60 h to synthesize 3-dehydroshikimic acid (60 g/L) and shikimate pathway byproducts in a total yield of 43% (mol/mol). Direct comparison of the impact of altered glucose transport on the yields of shikimate pathway products synthesized by E. coli has been previously hampered by different experimental designs and culturing conditions. In this study, the same product and byproduct mixture synthesized by E. coli constructs derived from the same progenitor strain is used to compare strategies for increasing phosphoenolpyruvate availability. Constructs are cultured under the same set of fermentor-controlled conditions.  相似文献   

18.
Bacillus anthracis has been employed as an agent of bioterrorism, with high mortality, despite anti-microbial treatment, which strongly indicates the need of new drugs to treat anthrax. Shikimate pathway is a seven step biosynthetic route which generates chorismic acid from phosphoenol pyruvate and erythrose-4-phosphate. Chorismic acid is the major branch point in the synthesis of aromatic amino acids, ubiquinone, and secondary metabolites. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of nontoxic antimicrobial agents and herbicides and have been submitted to intensive structural studies. The forth enzyme of this pathway is responsible for the conversion of dehydroshikimate to shikimate in the presence of NADP. In order to pave the way for structural and functional efforts toward development of new antimicrobials we describe the molecular modeling of shikimate dehydrogenase from Bacillus anthracis complexed with the cofactor NADP. This study was able to identify the main residues of the NADP binding site responsible for ligand affinities. This structural study can be used in the design of more specific drugs against infectious diseases.  相似文献   

19.
The amino acid composition of alpha-ketoglutarate dehydrogenase--a component of alpha-ketoglutarate dehydrogenase complex--from the pigeon breast muscle has been determined. A significant similarity of the enzyme amino acid composition isolated from systematically remote species has been revealed by comparison of the data obtained with the literary one concerning the alpha-ketoglutarate dehydrogenase from Escherichia coli and pig heart.  相似文献   

20.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号