首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3.4 kilobase cDNA complementary to rat transferrin receptor mRNA has been isolated from an adult rat testis cDNA library. The rat transferrin receptor nucleotide sequence was shown to be 82% similar to the human transferrin receptor sequence over the amino acid coding region and over 90% similar in the sequences known to be responsible for iron regulation in the human mRNA. The mRNA was shown by Northern blot analysis to be regulated by iron levels in Sertoli cells in culture. Iron depletion resulted in at least a 5-fold increase in receptor message in Sertoli cells, as well as in an actively growing testicular cell line (S10-7). The level of transferrin receptor mRNA in cultured Sertoli cells was not influenced by hormones; however, chronic administration of testosterone or FSH to hypophysectomized rats resulted in increased transferrin receptor mRNA levels in the testis. Northern blot analysis of mRNAs from testes of rats synchronized at various stages of the cycle of the seminiferous epithelium showed that transferrin receptor mRNA was differentially regulated throughout the cycle. Northern blots of mRNA from germinal cell populations derived from synchronized tests showed that the message was regulated in the nongerminal cell components of the tubule, most likely the Sertoli cell. The comparison of transferrin receptor mRNA levels in normal testes and testes from hypophysectomized rats, as well as in isolated germinal cells and cultured Sertoli cells, suggested that transferrin receptor mRNA levels were considerably higher in Sertoli cells than in other cell types of the seminiferous tubules.  相似文献   

2.
The transport of radioactive iron across the seminiferous tubules was analyzed in vivo by light-microscope quantitative radioautography. At 5 min after a single intratesticular injection of 55Fe-transferrin, a strong labeling of the basal aspect of the seminiferous epithelium was observed. Between 30 min and 2 h, the labeling on the basal aspect of the seminiferous epithelium decreased. This decrease was accompanied by a substantial increase of the radioautographic reaction over the cellular elements in the adluminal compartment. These results were consistent with the demonstration of 59Fe associated with meiotic spermatocytes and differentiating spermatids isolated by velocity sedimentation from testes injected with 59Fe-transferrin. Furthermore, after a single intratesticular injection of 59Fe-labeled human transferrin, radiolabeled rat transferrin was immunoprecipitated from homogenates of isolated tubules with a specific antibody and appeared as a single radioactive band on fluorographs of urea/polyacrylamide gels. Similarly, 59Fe-labeled rat transferrin but not 125I-transferrin was immunoprecipitated from rete testis fluids of testes infused with either 59Fe- or 125I-labeled human transferrin. Finally, the synthesis of testicular transferrin in vivo was demonstrated in fluorographs of immunoprecipitated transferrin after an intratesticular injection of 35S-methionine in rats whose livers were excluded from the general circulation by ligation of both the hepatic artery and the portal vein. Thus, our results demonstrated a unidirectional system of iron transport from the basal compartment of the seminiferous epithelium to the germ cells in the adluminal compartment involving two distinct transferrins, i.e., a serum transferrin and a testicular transferrin synthesized by the seminiferous epithelium.  相似文献   

3.
Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat   总被引:1,自引:0,他引:1  
Binding of 125I-transferrin (125I-Tf) to the plasma membrane of Sertoli cells and its endocytosis were analyzed by means of light- and electron-microscope quantitative radioautography. Five minutes after 125I-Tf was injected into the interstitial space of the testis, a strong labeling of the basal aspect of the seminiferous epithelium was observed in light-microscope radioautographs. Injection of the same dose of 125I-Tf plus a 200-fold excess of cold transferrin resulted in a marked diminution of the radioautographic reaction, indicating that the initial strong labeling with radiolabeled transferrin was specific. These results were consistent with the localization of immunoreactive fluorescence of transferrin receptor at the base of the seminiferous epithelium. In electron-microscope radioautographs of tubules collected at 5 min after injection, the membrane of Sertoli cells facing the basement membrane was well labeled with 125I-Tf. At 15 and 30 min, the plasma membrane was less intensely labeled, but the silver grains were then seen overlying multivesicular bodies with an electron-lucent matrix, identified as endosomes. This population of endosomes was always seen at a short distance from the basal membrane of Sertoli cells. At 90 min, no more labeling of the plasma membrane, endosomes, or any other cytoplasmic component was observed. Isolated seminiferous tubules and Sertoli cells labeled with 125I-Tf at 4 degrees C were rinsed and reincubated in a label-free medium at 37 degrees C for various periods of time from 5 to 90 min. A radioactive protein precipitated by trichloroacetic acid, presumably intact transferrin, was released from the tubules into the incubating medium; when measured, it was found to increase rapidly from 5 to 45 min and stabilize thereafter. These results suggest that transferrin was internalized by receptor-mediated endocytosis, reached endosomes, and then was released to the extratubular space. When native ferritin (NF), a tracer for fluid-phase endocytosis, was infused within the lumen of seminiferous tubules and 125I-Tf was simultaneously injected into the interstitial space, both markers rapidly reached different populations of endosomes. Endosomes labeled with NF, scattered throughout the cytoplasm, evolved with time into dense multivesicular bodies and secondary lysosomes, whereas radiolabeled transferrin reached only the endosomes located in the basal cytoplasm of Sertoli cells. The latter thus appeared to be principally involved in the uptake and recycling of transferrin.  相似文献   

4.
Much of what is known about the molecular regulation and function of adult Sertoli cells has been inferred from in vitro studies of immature Sertoli cells. However, adult and immature cells differ in significant ways and, moreover, many Sertoli cell functions are regulated by conditions that are difficult to replicate in vitro. Our objective was to develop a procedure to isolate Sertoli cells rapidly and in sufficient number and purity to make it possible to assess Sertoli cell function immediately after the isolation of the cells. The isolation procedure described herein takes less than 4 h and does not require culturing the cells. From a single 4-mo-old adult rat, we routinely obtain 7.0 +/- 0.4 x 10(6) Sertoli cells per testis, and from a 21-mo-old rat, 7.2 +/- 0.4 x 10(6) Sertoli cells per testis. The purity, determined by morphologic analyses of plastic-embedded cells or after staining for tyrosine-tubulin or vimentin, averaged 80%. The contaminants typically included germ cells (10%) and myoid cells (10%). The germ cell-expressed genes protamine-2 and hemiferrin were not detected in the Sertoli cell preparations by Northern blot analyses, but the Sertoli cell-expressed genes clusterin, cathepsin L, and transferrin were highly expressed. Transferrin mRNA levels were greater in Sertoli cells isolated from aged than from young adult rats, consistent with previous analyses of whole testes; and cathepsin L mRNA levels were far more highly expressed in Sertoli cells isolated from stages VI-VII than from other stages of the cycle of the seminiferous epithelium, also consistent with previous analyses of whole testes and isolated tubules. These studies indicate that the freshly isolated cells retain differentiated function, and thus it should be possible to assess the in vivo function of adult Sertoli cells by isolating the Sertoli cells and immediately assessing their function.  相似文献   

5.
6.
An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates. Our observations should facilitate efforts to achieve a differentiated functional state of Sertoli and peritubular cells in culture as well as to select secretory proteins for assessing their possible biological role in testicular function.  相似文献   

7.
The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.  相似文献   

8.
Cyclic Protein-2 (CP-2), a stage-specific secretory product of the rat seminiferous epithelium, has been isolated from seminiferous tubule fluid (STF) and Sertoli cell culture medium. Isolation from STF was accomplished by mixing STF with radiolabeled proteins secreted by Stage VI-VII seminiferous tubules and sequential fractionation of these proteins by hydroxylapatite, DEAE-agarose, and quaternary amine ion-exchange chromatography. Radiolabeled proteins were used to identify the chromatographic fractions that contained CP-2. Through use of these procedures, a highly purified preparation of radioinert CP-2 was obtained from seminiferous tubule fluid. Cyclic Protein-2 was also isolated from Sertoli cell culture medium, indicating that the Sertoli cell is its most likely source. Preliminary characterization of CP-2 was conducted. First, CP-2 appeared to be highly enriched in methionine. Second, the molecular weight of CP-2 was found to be 20,000. Third, analysis by reverse-phase hydrophobic chromatography indicated that CP-2 was relatively hydrophobic. We conclude that CP-2 is a small hydrophobic glycoprotein secreted in vivo and in vitro in a stage-specific manner by Sertoli cells.  相似文献   

9.
Localization of transferrin and transferrin receptors in rat testes   总被引:2,自引:0,他引:2  
One of the major proteins secreted by rat Sertoli cells in culture is a transferrin-like protein (Skinner and Griswold, 1980). The purpose of this study was to quantitate the amount of testicular transferrin in fluids isolated from the testis by the use of a radioimmunoassay and to determine the location of transferrin and transferrin receptors in the testis by indirect immunofluorescence. Seminiferous tubule fluid, rete testis fluid, and testicular lymph were collected from rat testes and were found to contain 141 micrograms, 47 micrograms and 3.7 mg transferrin per ml of fluid, respectively. Serum was found to contain 3.7 mg/ml transferrin. Paraffin sections of rat testis were incubated with rabbit anti-rat transferrin, biotinylated goat anti-rabbit and fluorescein-conjugated avidin. Immunoreactive transferrin was thus localized on the proacrosome and nuclear cap of developing spermatids. Late spermatids showed transferrin over the entire region of the head but mature testicular spermatozoa exhibited little fluorescence. The interstitial tissue between seminiferous tubules fluoresced brightly, indicating a large amount of transferrin in this area. By pretreating sections with rat transferrin, the receptor for the protein was localized on and in spermatocytes and early round spermatids. Dividing germ cells were brightly fluorescent.  相似文献   

10.
The binding and uptake of rat and human transferrin by isolated rat seminiferous tubules was studied. During the isolation and incubation of the tubules, the blood-testis barrier remained intact. Iron-saturated and iron-free (apo-) transferrin use the same binding sites on the surface of the tubules, but the dissociation constant is about two times higher for apotransferrin than for iron-saturated transferrin. The affinity of the receptors is equal for rat and human transferrin, but human transferrin binds to more surface binding sites (2.6 X 10(10) per 10 cm tubule length) than rat transferrin (1.1 X 10(10) per 10 cm tubule length) at 0 degrees C. At 33 degrees C equal numbers of human and rat transferrin molecules are taken up (about 8 X 10(10)) per 10 cm tubule length. The quantitative difference between 0 degrees C and 33 degrees C is caused by the fact that at 33 degrees C receptor-mediated endocytosis and recycling occur. As a consequence, both surface and intracellular transferrin receptors are detected at 33 degrees C. The dissociation constants are not temperature-dependent.  相似文献   

11.
The aim of the present study is to provide a morphological explanation of carbendazim (CBZ)-induced sloughing of germ cells that occurs in a stage-specific manner. Therefore, very early alterations in the seminiferous tubule epithelium were examined histologically in the rat testis after oral administration of CBZ (400mg/kg). Gaps between the elongated and round spermatids, the first indication of germ cell sloughing (pre-sloughing), were observed in stage late VI-early VII seminiferous tubules at 90-min post-treatment. Tubulin immunoreaction in the Sertoli cells was reduced in intensity in tubules with pre-sloughing. However, electron microscopy demonstrated that there were some intact microtubules in these cells. At 120 min, sloughing was seen in stage late VI-early VII and XIII-XIV. Tubulin immunoreaction in the Sertoli cells was greatly decreased in intensity in tubules where cell sloughing was observed. Electron microscopy showed that there were few microtubules in the body region of these cells. Stages II-V and mid-VII-VIII were exempt from the sloughing effect at 180 min. These changes in microtubules were not observed in Sertoli cells that did not exhibit sloughing characteristics, regardless of the post-treatment intervals. The present results suggest that stage specificity of sloughing is due to the stage-specific susceptibility of Sertoli cell microtubules to CBZ.  相似文献   

12.
In the seminiferous tubules of the rat, as in most mammalian species, the developing germ cells form associations with constant cell composition. These cellular associations or stages follow each other in a regular manner along the seminiferous tubules giving rise to seminiferous epithelial wave. When a freshly isolated unstained seminiferous tubulus of the rat is subjected to transillumination under a stereomicroscope, the different segments of the seminiferous epithelial wave absorb light in a characteristic manner permitting their recognition. Using this technique, small segments with accurately known cell composition can be isolated and studied in living state with phase-contrast microscopy. In several cases, the phase-contrast microscopy gives more information about the cell morphology than conventional histological methods. In this study all major developmental steps from early spermatogonia to mature spermatids have been described. The findings of the present study can be used as reference material in the evaluation and identification of the various cell types of the seminiferous tubules obtained, e.g. by the Staput fractionation method. In addition, the findings may be helpful in the evaluation of spermatogenic and Sertoli cells in culture conditions.  相似文献   

13.
Adult rat Leydig cell aromatase activity is stimulated 2.5 fold by LH or dbcAMP. Spent media prepared from seminiferous tubules or Sertoli cells of immature rats depress both the basal and the LH stimulated estradiol syntheses (25 and 20% decreases, respectively). These inhibitory effects are further enhanced when FSH is added to the culture medium of seminiferous tubules or Sertoli cells. Rat serum as well as culture media from other cell lines are ineffective while seminiferous tubule media from other immature animals (mouse, guinea-pig, calf) inhibit the aromatase activity. This Sertoli cell factor is a heat stable protein (molecular weight greater than 10 kDa), different from the LHRH-like Sertoli cell compound, which acts on the aromatase activity at a step beyond the adenylate cyclase.  相似文献   

14.
Junctional transfer of ions in monolayer primary cultures of Sertoli cells and in intact seminiferous tubules from 20 day-old rats has been investigated by using electrophysiological techniques. The electrotonic coupling of both intact tubule and monolayer culture was inhibited by the presence of dibutyryl cyclic AMP (10(-4) M) in the medium. In contrast, 1-oleoyl-2-acetylglycerol (10(-5) M) and 12-O-tetradecanoyl-phorbol-13-acetate (10(-7) M) decreased the junctional resistivity and increased the extent of the coupling in immature tubules. The significance of this modulation of the cell coupling in the seminiferous epithelium is discussed.  相似文献   

15.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

16.
Transferrin is well known as an iron transport glycoprotein. Dimeric or tetrameric transferrin forms have recently been reported to modulate phagocytosis by human leukocytes. It is mainly synthesized by the liver, and also by other sources, such as Sertoli cells of the testis. Sertoli cells show a strong phagocytic activity toward apoptotic germ cells and residual bodies. Here, we provide evidence that purified human dimeric transferrin from commercial sources decreased residual body phagocytosis, unlike monomeric transferrin. The presence of iron appeared essential for dimeric transferrin inhibitory activity. Importantly, dimeric transferrin could be visualized by immunoblotting in Sertoli cell lysates as well as in culture media, indicating that dimeric transferrin could be physiologically secreted by Sertoli cells. By siRNA-mediated knockdown, we show that endogenous transferrin significantly inhibited residual body ingestion by Sertoli cells. These results are the first to identify dimeric transferrin in Sertoli cells and to demonstrate its implication as a physiological modulator of residual body phagocytosis by Sertoli cells.  相似文献   

17.
The transferrin receptor has been immunohistochemically localized in the seminiferous epithelium of the rat with a monoclonal antibody, MRC OX26, which recognizes the transferrin receptor glycoprotein. The receptor was detectable on mitotically and meiotically dividing germ cells and, less abundantly, on round spermatids. It was lost from germ cells during spermatid elongation and was undetectable on immature spermatozoa. The transferrin receptor was also present on Sertoli cells in the testes of immature animals and on Sertoli cells in the testes of aspermatogenic animals that had been irradiated in utero. It was not detectable on Sertoli cells in the testes of cryptorchid animals. These studies demonstrate that the transferrin receptor is abundant on dividing germ cells as well as dividing somatic cells.  相似文献   

18.
19.
Summary Seminiferous tubules from human testes were mechanically isolated, the cut edges were sealed, and the tubules were cultured in medium free of fetal calf serum (FCS). Degeneration of germ cells occurred during the culture period and was paralleled by a disruption of the seminiferous epithelium, a disturbance in morphology and function of Sertoli cells, and a thickening of the lamina propria. However, when tubules were cultured for 5 days in the presence of FCS, degeneration of the spermatogenic tissue was reduced. FCS increased the mitotic activity of germ cells, but did not maintain normal morphology and function of Sertoli cells and cellular elements of the lamina propria. The thickening of the tubular wall concurred with a change in phenotype of lamina-propria cells from myoid to fibroblastic. Addition of nerve growth factor (NGF) to the culture medium (i) maintained the myoid phenotype of lamina-propria cells, (ii) prevented thickening of the tubular wall, and (iii) stabilized Sertoli cell morphology and function. The effects of NGF appeared to depend on the trophic effects of FCS, since NGF alone had no influence on the maintenance of a regular morphology of the spermatogenic epithelium. The present results indicate a decisive role for NGF in stabilizing specific functions of seminiferous tubules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号