首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.  相似文献   

2.
Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.  相似文献   

3.
The shikimate pathway is essential for survival of the apicomplexan parasites Plasmodium falciparum, Toxoplasma gondii and Cryptosporidium parvum. As it is absent in mammals it is a promising therapeutic target. Herein, we describe the genes encoding the shikimate pathway enzymes in T. gondii. The molecular arrangement and phylogeny of the proteins suggests homology with the eukaryotic fungal enzymes, including a pentafunctional AROM. Current rooting of the eukaryotic evolutionary tree infers that the fungi and apicomplexan lineages diverged deeply, suggesting that the arom is an ancient supergene present in early eukaryotes and subsequently lost or replaced in a number of lineages.  相似文献   

4.
In the malaria parasite Plasmodium falciparum isoprenoid precursors are synthesised inside a plastid-like organelle (apicoplast) by the mevalonate independent 1-deoxy-d-xylulose-5-phosphate (DOXP) pathway. The last reaction step of the DOXP pathway is catalysed by the LytB enzyme which contains a [4Fe-4S] cluster. In this study, LytB of P. falciparum was shown to be catalytically active in the presence of an NADPH dependent electron transfer system comprising ferredoxin and ferredoxin-NADP(+) reductase. LytB and ferredoxin were found to form a stable protein complex. These data suggest that the ferredoxin/ferredoxin-NADP(+) reductase redox system serves as the physiological electron donor for LytB in the apicoplast of P. falciparum.  相似文献   

5.
Biogenesis of iron-sulfur ([Fe-S]) proteins in eukaryotes requires the function of complex proteinaceous machineries in both mitochondria and cytosol. In contrast to the mitochondrial pathway, little is known about [Fe-S] protein assembly in the cytosol. So far, four highly conserved proteins (Cfd1, Nbp35, Nar1 and Cia1) have been identified as members of the cytosolic [Fe-S] protein assembly machinery, but their molecular function is unresolved. Using in vivo and in vitro approaches, we found that the soluble P-loop NTPases Cfd1 and Nbp35 form a complex and bind up to three [4Fe-4S] clusters, one at the N terminus of Nbp35 and one each at a new C-terminal cysteine-rich motif present in both proteins. These labile [Fe-S] clusters can be rapidly transferred and incorporated into target [Fe-S] apoproteins in a Nar1- and Cia1-dependent fashion. Our data suggest that the Cfd1-Nbp35 complex functions as a novel scaffold for [Fe-S] cluster assembly in the eukaryotic cytosol.  相似文献   

6.
The ABC (ATP-binding cassette) protein superfamily is a ubiquitous and functionally versatile family of proteins that is conserved from archaea to humans. In eukaryotes, most of these proteins are implicated in the transport of a variety of molecules across cellular membranes, whereas the remaining ones are involved in biological processes unrelated to transport. The biological functions of several ABC proteins have been described in clinically important parasites and nematode worms and include vesicular trafficking, phospholipid movement, translation and drug resistance. This chapter reviews our current understanding of the role of ABC proteins in drug resistance and treatment failure in apicomplexan, trypanosomatid and amitochondriate parasites of medical relevance as well as in helminths.  相似文献   

7.
The plastid of Plasmodium falciparum, the apicoplast, performs metabolic functions essential to the parasite. Various reactions in the plastid require the assembly of [Fe-S] prosthetic groups on participating proteins as well as the reductant activity of ferredoxin that is converted from its apo-form by the assembly of [Fe-S] clusters inside the apicoplast. The [Fe-S] assembly pathway involving sulphur mobilising Suf proteins has been predicted to function in the apicoplast with one component (PfSufB) encoded by the plastid genome itself. We demonstrate the ATPase activity of recombinant P. falciparum nuclear-encoded SufC and its localisation in the apicoplast. Further, an internal region of apicoplast SufB was used to detect PfSufB-PfSufC interaction in vitro; co-elution of SufB from parasite lysate with recombinant PfSufC on an affinity column also indicated an interaction of the two proteins. As a departure from bacterial SufB and similar to reported plant plastid SufB, apicoplast SufB exhibited ATPase activity, suggesting the evolution of specialised functions in the plastid counterparts. Our results provide experimental evidence for an active Suf pathway in the Plasmodium apicoplast.  相似文献   

8.
Apicomplexan parasites, Eimeria tenella, Plasmodium spp. and Toxoplasma gondii, possess a homologous plastid-like organelle termed the apicoplast, derived from the endosymbiotic enslavement of a photosynthetic alga. However, currently no eimerian nuclear encoded apicoplast targeted proteins have been identified, unlike in Plasmodium spp. and T. gondii. In this study, we demonstrate that nuclear encoded enoyl reductase of E. tenella (EtENR) has a predicted N-terminal bipartite transit sequence, typical of apicoplast-targeted proteins. Using a combination of immunocytochemistry and EM we demonstrate that this fatty acid biosynthesis protein is located in the apicoplast of E. tenella. Using the EtENR as a tool to mark apicoplast development during the Eimeria lifecycle, we demonstrate that nuclear and apicoplast division appear to be independent events, both organelles dividing prior to daughter cell formation, with each daughter cell possessing one to four apicoplasts. We believe this is the first report of multiple apicoplasts present in the infectious stage of an apicomplexan parasite. Furthermore, the microgametes lacked an identifiable apicoplast consistent with maternal inheritance via the macrogamete. It was found that the size of the organelle and the abundance of EtENR varied with developmental stage of the E. tenella lifecycle. The high levels of EtENR protein observed during asexual development and macrogametogony is potentially associated with the increased synthesis of fatty acids required for the rapid formation of numerous merozoites and for the extracellular development and survival of the oocyst. Taken together the data demonstrate that the E. tenella apicoplast participates in type II fatty acid biosynthesis with increased expression of ENR during parasite growth. Apicoplast division results in the simultaneous formation of multiple fragments. The division mechanism is unknown, but is independent of nuclear division and occurs prior to daughter formation.  相似文献   

9.
10.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

11.
12.
Proteins containing [Fe-S] clusters perform essential functions in all domains of life. Previously, we identified the sufABCDSE operon as being necessary for virulence of the plant pathogen Erwinia chrysanthemi. In addition, we collected preliminary evidence that the sufABCDSE operon might be involved in the assembly of [Fe-S] clusters. Of particular interest are the sufB, sufC and sufD genes, which are conserved among Eubacteria, Archaea, plants and parasites. The present study establishes SufC as an unorthodox ATPase of the ABC superfamily that is located in the cytosol, wherein it interacts with both SufB and SufD. Moreover, under oxidative stress conditions, SufC was found to be necessary for the activity of enzymes containing oxygen-labile [Fe-S] clusters, but dispensable for glutamate synthase, which contains an oxidatively stable [Fe-S] cluster. Lastly, we have shown SufBCD to be essential for iron acquisition via chrysobactin, a siderophore of major importance in virulence. We discuss a model wherein the SufBCD proteins contribute to bacterial pathogenicity via their role in the assembly of [Fe-S] clusters under oxidative stress and iron limitation.  相似文献   

13.
Single-celled apicomplexan parasites are known to cause major diseases in humans and animals including malaria, toxoplasmosis, and coccidiosis. The presence of apicoplasts with the remnant of a plastid-like DNA argues that these parasites evolved from photosynthetic ancestors possibly related to the dinoflagellates. Toxoplasma gondii displays amylopectin-like polymers within the cytoplasm of the dormant brain cysts. Here we report a detailed structural and comparative analysis of the Toxoplasma gondii, green alga Chlamydomonas reinhardtii, and dinoflagellate Crypthecodinium cohnii storage polysaccharides. We show Toxoplasma gondii amylopectin to be similar to the semicrystalline floridean starch accumulated by red algae. Unlike green plants or algae, the nuclear DNA sequences as well as biochemical and phylogenetic analysis argue that the Toxoplasma gondii amylopectin pathway has evolved from a totally different UDP-glucose-based metabolism similar to that of the floridean starch accumulating red alga Cyanidioschyzon merolae and, to a lesser extent, to those of glycogen storing animals or fungi. In both red algae and apicomplexan parasites, isoamylase and glucan–water dikinase sequences are proposed to explain the appearance of semicrystalline starch-like polymers. Our results have built a case for the separate evolution of semicrystalline storage polysaccharides upon acquisition of photosynthesis in eukaryotes.This article contains online-only supplementary material.Reviewing Editor:Dr. Patrick Keeling  相似文献   

14.
Plastids are widespread in plant and algal lineages. They are also exploited by some nonphotosynthetic protists, including malarial parasites, to support their diverse modes of life. However, cryptic plastids may exist in other nonphotosynthetic protists, which could be important in studies on the diversity and evolution of plastids. The parasite Perkinsus marinus, which causes mass mortality in oyster farms, is a nonphotosynthetic protist that is phylogenetically related to plastid-bearing dinoflagellates and apicomplexans. In this study, we searched for P. marinus methylerythritol phosphate (MEP) pathway genes, responsible for de novo isoprenoid synthesis in plastids, and determined the full-length gene sequences for 6 of 7 of these genes. Phylogenetic analyses revealed that each P. marinus gene clusters with orthologs from plastid-bearing eukaryotes, which have MEP pathway genes with essentially the same mosaic pattern of evolutionary origin. A new analytical method called sliding-window iteration of TargetP was developed to examine the distribution of targeting preferences. This analysis revealed that the sequenced genes encode bipartite targeting peptides that are characteristic of proteins targeted to secondary plastids originating from endosymbiosis of eukaryotic algae. These results support our idea that Perkinsus is a cryptic algal group containing nonphotosynthetic secondary plastids. In fact, immunofluorescent microscopy indicated that 1 of the MEP pathway enzymes, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, was localized to small compartments near mitochondrion, which are possibly plastids. This tiny organelle seems to contain very low quantities of DNA or may even lack DNA entirely. The MEP pathway genes are a useful tool for investigating plastid evolution in both of the photosynthetic and nonphotosynthetic eukaryotes and led us to propose the hypothesis that ancestral "chromalveolates" harbored plastids before a secondary endosymbiotic event.  相似文献   

15.
Iron-sulphur ([Fe-S]) clusters are simple inorganic prosthetic groups that are contained in a variety of proteins having functions related to electron transfer, gene regulation, environmental sensing and substrate activation. In spite of their simple structures, biological [Fe-S] clusters are not formed spontaneously. Rather, a consortium of highly conserved proteins is required for both the formation of [Fe-S] clusters and their insertion into various protein partners. Among the [Fe-S] cluster biosynthetic proteins are included a pyridoxal phosphate-dependent enzyme (NifS) that is involved in the activation of sulphur from l-cysteine, and a molecular scaffold protein (NifU) upon which [Fe-S] cluster precursors are formed. The formation or transfer of [Fe-S] clusters appears to require an electron-transfer step. Another complexity is that molecular chaperones homologous to DnaJ and DnaK are involved in some aspect of the maturation of [Fe-S]-cluster-containing proteins. It appears that the basic biochemical features of [Fe-S] cluster formation are strongly conserved in Nature, since organisms from all three life Kingdoms contain the same consortium of homologous proteins required for [Fe-S] cluster formation that were discovered in the eubacteria.  相似文献   

16.
Eukaryotic pathogens of the phylum Apicomplexa contain a non-photosynthetic plastid, termed apicoplast. Within this organelle distinct iron-sulfur [Fe-S] cluster proteins are likely central to biosynthesis pathways, including generation of isoprenoids and lipoic acid. Here, we targeted a nuclear-encoded component of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria parasite Plasmodium berghei. We show that ablation of the gene encoding a nitrogen fixation factor U (NifU)-like domain containing protein (NFUapi) resulted in parasites that were able to complete the entire life cycle indicating redundant or non-essential functions. nfu parasites displayed reduced merosome formation in vitro, suggesting that apicoplast NFUapi plays an auxiliary role in establishing a blood stage infection. NFUapi fused to a combined fluorescent protein-epitope tag delineates the Plasmodium apicoplast and was tested to revisit inhibition of liver stage development by azithromycin and fosmidomycin. We show that the branched apicoplast signal is entirely abolished by azithromycin treatment, while fosmidomycin had no effect on apicoplast morphology. In conclusion, our experimental genetics analysis supports specialized and/or redundant role(s) for NFUapi in the [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite.  相似文献   

17.
18.
IscA/Isa proteins function as alternative scaffolds for the assembly of Fe-S clusters and/or provide iron for their assembly in prokaryotes and eukaryotes. Isa are usually non-essential and in most organisms are confined to the mitochondrion. We have studied the function of TbIsa1 and TbIsa2 in Trypanosoma brucei, where the requirement for both of them to sustain cell growth depends on the life cycle stage. The TbIsa proteins are abundant in the procyclic form, which contains an active organelle. Both proteins are indispensable for growth, as they are required for the assembly of Fe-S clusters in mitochondrial aconitase, fumarase and succinate dehydrogenase. Reactive oxygen species but not iron accumulate in the procyclic mitochondrion upon ablation of the TbIsa proteins, but their depletion does not influence the assembly of Fe-S clusters in cytosolic proteins. In the bloodstream form, which has a downregulated mitochondrion, the TbIsa proteins are non-essential. The Isa2 orthologue of the anaerobic protist Blastocystis partially rescued the growth and enzymatic activities of TbIsa1/2 knock-down. Rescues of single knock-downs as well as heterologous rescues with human Isa orthologues partially recovered the activities of aconitase and fumarase. These results show that the Isa1 and Isa2 proteins of diverse eukaryotes have overlapping functions.  相似文献   

19.
ABSTRACT. The field studying unusual mitochondria in microbial eukaryotes has come full circle. Some 10–15 years ago it had the evangelical task of informing the wider scientific community that not all eukaryotes had mitochondria. Advances in the field indicated that although some protists might not have mitochondria, the presence of genes of mitochondrial ancestry suggested their lineage once had. The subsequent discovery of mitochondrial compartments in all supposedly amitochondriate protists studied so far indicates that all eukaryotes do have mitochondria indeed. This assertion has fuelled novel eukaryotic origin theories and weakened others. But what do we know about these unusual mitochondria from anaerobic protists? Have they all converged onto similar roles? Iron–sulphur cluster assembly is often hailed as the unifying feature of these organelles. However, the iron–sulphur protein that is so important that a complete organelle is being maintained has not been identified. Is it to be expected that all unusual mitochondria perform the same physiological role? These organelles have been found in numerous protists occupying different ecological niches. Different selection pressures operate on different organisms so there is no reason to suspect that their mitochondria should all be the same.  相似文献   

20.
Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号