首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Hashimoto  H Iijima  Y Nozaki  K Shudo 《Biochemistry》1986,25(18):5103-5110
New hemin-intercalators (Hem-G's) that cleave DNA were synthesized, on the basis of 2-amino-6-methyldipyrido[1,2-alpha:3',2'-d]imidazole (Glu-P-1) as an intercalator moiety. Hem-G's, which possess an intramolecular ligand of the ferrous ion (a histidine or imidazole moiety), cleave DNA very efficiently and act at guanine-pyrimidine sequences preferentially. Bleomycin (BLM) also cleaved DNA with the same base-sequence selectivity shown by Hem-G's. The 5'-terminus of the DNA fragments cleaved by Hem-G's or by BLM is a phosphoryl group, while the 3'-terminus of the cleaved DNA fragments does not possess a 3'-phosphoryl group. There are more than three kinds of 5'-end 32P-labeled DNA fragments, which can be substrates of terminal deoxynucleotidyl transferase (TdT). One of the 3'-termini of the cleaved DNA fragments is a 3'-hydroxy group. The mobility of the 3'-end 32P-labeled DNA fragment cleaved by Hem-G's or by BLM corresponds to the removal of pyrimidine bases having guanine at the 5'-side. The mobility of one kind of the cleaved 5'-end 32P-labeled DNA fragments corresponds to the removal of guanine having pyrimidine at the 3'-side, followed by 3'-dephosphorylation. We propose that there exist plural mechanisms for DNA cleavage by Hem-G's or by BLM. The deduced structures of the cleaved DNA fragments suggest that one of the mechanisms involves deletion of two nucleotide units from DNA.  相似文献   

2.
3.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RECQ-like helicase that is presumed to function in mammalian DNA replication, recombination, or repair. We show here that BLM, but not the related RECQ-like helicase WRN, is rapidly cleaved in cells undergoing apoptosis. BLM was cleaved to 47- and 110-kDa major fragments, with kinetics similar to the apoptotic cleavage of poly(A)DP-ribose polymerase. BLM cleavage was prevented by a caspase 3 inhibitor and did not occur in caspase 3-deficient cells. Moreover, recombinant BLM was cleaved to 47- and 110-kDa fragments by caspase 3, but not caspase 6, in vitro. The caspase 3 recognition sequence (412)TEVD(415) was verified by mutating aspartate 415 to glycine and showing that this mutation rendered BLM resistant to caspase 3 cleavage. Cleavage did not abolish the BLM helicase activity but abolished BLM nuclear foci and the association of BLM with condensed DNA and the insoluble matrix. The results suggest that BLM, but not WRN, is an early selected target during the execution of apoptosis.  相似文献   

4.
抗水稻条纹叶枯病毒核酶的设计,克隆及体外活性测定   总被引:10,自引:0,他引:10  
为探索控制水稻条纹叶枯病毒(Ricestripevirus,RSV)设计合成了特异切割该病毒RNA保守区及编码病害特异性蛋白(DiseaseSpecificProtein,DSP)基因的核酶,核酶基因的长度均为40个碱基,用化学合成方法合成其正链及与其3'-末端互补的15个碱基引物,用TagDNA多聚酶合成其互补链。双链DNA直接插入克隆载体PGEM3zf(+)的Smal位点。序列测定表明,克隆得到的核酶序列与设计的核酶序列完全一致。经SP6RNA多聚酶体外转录得到核酶RNA。当核酶RNA与以同样方法转录得到的靶基因RNA混合反应,可得到预期结果相同的切割片段,表明两种核酶在体外均具有特异性切割活性。  相似文献   

5.
The DNA intermediates and final products formed by the Type I restriction endonuclease, EcoB, were further characterized. DNA cleaved on only one strand (hemi-restricted DNA) contains gaps of approximately 70-100 nucleotides, while the fully restricted products contain 3'-single-stranded tails averaging approximately 70-100 nucleotides for each strand cleaved. The gaps and tails are formed with the release of an equal number of nucleotides as small oligonucleotides that are soluble in acid. After purification, neither the hemi-restricted nor the fully restricted DNAs are cleaved again by EcoB. There is no apparent specificity for which strand of a duplex is initially cleaved by EcoB, nor is there specificity with respect to the composition of the 3'-terminal nucleotide formed on the DNA or the 3'- or 5'-terminal nucleotides of the acid-soluble oligonucleotides released during DNA cleavage. The structure formed at the 5' terminus of the DNA product which blocks phosphorylation by T4 polynucleotide kinase remains unknown, but its removal with phage lambda exonuclease allows at least some reutilization of recognition sites by EcoB as well as phosphorylation of the newly formed 5' termini. To explain the complex mechanism of this enzyme, it is suggested that the unidentified 5'-tails prevent wasteful rerestriction from occurring, whereas the 3'-single-stranded tails create DNA which, when nonhomologous to chromosomal DNA, cannot be rescued because such tails are not substrate for DNA polymerases. However, when homologous chromosomal DNA exists, the randomly cleaved large fragments with these tails can easily be assimilated by recA-mediated genetic recombination, thus stimulating DNA exchange between related organisms.  相似文献   

6.
The reaction of site-specific cleavage of tRNA at a 7-methylguanine residue, including subsequent treatment with sodium borohydride and aniline [Wintermeyer, W. and Zachau, H.G. (1975) FEBS Lett. 58, 306-309], was shown to work only within a certain range of tRNA concentrations (higher than 30 microM). The Escherichia coli 16S rRNA, which contained a unique m7G (position 527), could not be split by this method when taken at any concentration. It was found that the presence of statistically methylated carrier RNA in the reaction mixture at the borohydride stage significantly stimulates site-specific fragmentation of 16S rRNA and 32P-labeled tRNAs. Direct sequencing proved that 16S rRNA and tRNA are cleaved by this procedure successfully at the m7G residue. The E. coli 16S rRNA was preparatively cleaved by the described procedure into two fragments. The 5'-terminal fragment (1-526) and the 3'-terminal fragment (528-1542) were isolated in the pure form and their secondary structure investigated by the circular dichroism method. The results of this study showed that the secondary and tertiary structures of the 5'-terminal one-third of the 16S rRNA are at least as ordered as those of intact 16S rRNA or its 3'-terminal two-thirds.  相似文献   

7.
A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows.  相似文献   

8.
During genotoxic stress, reactive oxygen species hydrogen peroxide (H(2)O(2)) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H(2)O(2), via generation of multichromosomal fusion and chromosomal fragments. H(2)O(2) caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H(2)O(2) cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H(2)O(2). Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.  相似文献   

9.
Azospirillum brasilense, A. amazonense, and A. lipoferum strains were screened for restriction endonucleases using phage lambda DNA. The extract of A. brasilense 29711 cleaved lambda DNA into specific fragments. It was concluded that this strain possesses a class II restriction endonuclease which was named AbrI. AbrI has a single recognition site on lambda DNA at position of approx. 33 500 bp. AbrI was characterized as an isoschizomer of XhoI, which cuts lambda DNA at 33 498 bp and cleaves double-stranded DNA at the sequence 5'-C TCGAG-3'. From other Azospirilla strains only A. amazonense QRZ42 extracts (AamI activity) cleaved DNA into specific fragments under certain conditions.  相似文献   

10.
11.
The Fe(III) complex of bleomycin (BLM) is, at pH 4, in the high-spin form. At pH 7, the coordination of the alpha-amino group of the beta-aminoalanine moiety of BLM converts it to a low-spin species: BLM X Fe(III) X alpha NH2. The conversion of the high-spin species to the low-spin one can also take place at pH 4 (i) by addition of ligands L such as N3-, S2O3(2-), and SCN- or (ii) through interaction with DNA. Moreover, the addition, at pH 7, of DNA to BLM X Fe(III) that has been previously complexed with one of these ligands L displaces this latter from its position. These results suggest that (i) the ligand L occupies the same site of coordination as the alpha-amino group and (ii) an interaction occurs between the beta-aminoalanine moiety of BLM and DNA that lowers the pKd of the alpha-amino group, promoting its coordination to iron.  相似文献   

12.
13.
In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom’s syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIα and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIα is severely impaired. Since the BLM–topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis.  相似文献   

14.
DNA fragmentation factor (DFF) is a heterodimeric protein composed of 45-kDa (DFF45) and 40-kDa (DFF40) subunits, a protein that mediates regulated DNA fragmentation and chromatin condensation in response to apoptotic signals. DFF45 is a specific molecular chaperone and an inhibitor for the nuclease activity of DFF40. Previous studies have shown that upon cleavage of DFF45 by caspase-3, the nuclease activity of DFF40 is relieved of inhibition. Here we further investigate the mechanism of DFF40 activation. We demonstrate that DFF45 can also be cleaved and inactivated by caspase-7 but not by caspase-6 and caspase-8. The cleaved DFF45 fragments dissociate from DFF40, allowing DFF40 to oligomerize to form a large functional complex that cleaves DNA by introducing double strand breaks. Histone H1 directly interacts with DFF, confers DNA binding ability to DFF, and stimulates the nuclease activity of DFF40 by increasing its Kcat and decreasing its Km.  相似文献   

15.
J G McCarthy  L D Williams  A Rich 《Biochemistry》1990,29(25):6071-6081
We have examined the reactivity of B DNA with two chemical probes of DNA structure, potassium permanganate (KMnO4; thymine specific) and diethyl pyrocarbonate (DEPC; purine specific, A greater than G). The DNA probed is from the beta-lactamase promoter region of the vector pBR322, and from the 3' noncoding region of a chicken embryonic myosin heavy chain gene. The chemical probes display variable reactivity with the susceptible bases in these fragments, suggesting that modification of these bases by KMnO4 and DEPC is quite sequence dependent. In contrast, these probes react with the short A-tracts present in these DNA fragments in a reproducible fashion, generating two related patterns of reactivity. In the majority of the A-tracts, all but the 3'-terminal thymine are protected from KMnO4 attack, while DEPC reacts significantly with all but the 3'-terminal adenine of the A-tracts. Some A-tracts also display a very high DEPC reactivity at the adenine adjacent to the 3'-terminal unreactive adenine. Little qualitative difference in the KMnO4 reactivity of the A-tracts was found between 12 and 43 degrees C. However, at lower temperatures the elevated KMnO4 reactivity at the 3'-terminal A-tract thymine is sometimes lost. Raising the temperature of the KMnO4 reaction can cause relatively large increases in the reactivity of some single thymines, suggesting that significant local changes in stacking occur at these thymines at elevated temperatures. The data presented suggest that many short A-tracts embedded in long fragments of DNA can assume a number of related structures in solution, each of which possess distinct junctions with the flanking DNA. This result is consistent with high-resolution structural studies on oligonucleotides containing short A-tracts. The relevance of these results to current models of A-tract structure and DNA bending is discussed. Our data also indicate that KMnO4 and DEPC are potentially useful reagents for the study of sequence-dependent variations in B DNA structure.  相似文献   

16.
DNA strand scission by activated bleomycin group antibiotics   总被引:1,自引:0,他引:1  
The bleomycins (BLMs) are a structurally related group of antitumor antibiotics used clinically for the treatment of certain malignancies. The mechanism of action of the BLM is believed to involve DNA strand scission, a process that requires O2 and an appropriate metal ion; the therapeutically relevant metal is probably iron or copper. DNA strand scission by activated Fe X BLM involves oxygenation C-4' of deoxyribose and leads to two sets of products. One set results from scission of the C-3'--C-4' bond of deoxyribose, with concomitant cleavage of the DNA chain. The other set of products consists of free bases and an alkali-labile lesion, the latter of which leads to DNA chain cleavage on subsequent treatment with base. The structures of all of these degradation products have now been established by direct comparison with authentic synthetic samples. Also studied was the activation of BLM with (mono)oxygen surrogates such as iodosobenzene. The chemistry of the activated BLM so formed was remarkably similar to that of activated cytochrome P-450 and structurally related metalloporphyrins, which suggests a mechanistic analogy between the two. Remarkably, both Fe X BLM and Cu X BLM were also shown to be activated by NADPH cytochrome P-450 reductase in a transformation that was dependent on metal ion, O2 and NADPH.  相似文献   

17.
To elucidate the mechanism of DNA strand scission by bleomycin, a d(C-G-C-G-C-G) duplex was treated with the bleomycin-iron ion complex in the presence of H2O2 and degradation products (1, 2, cytosine and deoxyguanosine 5'-phosphate) were identified. 1 and 2 contain a carboxymethyl group attached to the 3'-terminal phosphoryl group of d(C-Gp) and d(C-G-C-Gp), respectively. These compounds were identified by UV, 1H and 31P NMR spectroscopy and paper electrophoresis. 1 was synthesized from the protected dinucleotide and glycolic acid and the proton NMR spectrum was identical to that of 1 obtained as a degradation product. Thus the oligonucleotide fragments produced by the action of bleomycin on DNA were directly identified and cleavage of the C3'-C4' bond of the sugar residues was proved.  相似文献   

18.
19.
A new restriction endonuclease BspLS2I was isolated from the thermophilic bacterium Bacillus species LS2 and purified by blue sepharose and hydroxyapatite chromatographies. The enzyme is an isoschizomer of SduI from Streptococcus durans. BspLS2I recognizes the sequence 5' G(G/A/T)GC(C/T/A) decreases C 3' on double-stranded DNA and cleaves it is indicated by the arrow to yield sticky-ended DNA fragments. Maximum catalytic activity of endonuclease was found in 10 mM tris-HCl (pH 7.9) in the presence of 15-30 mM MgCl2 at 50 degrees C. The phage T4 glucosylated DNA is not cleaved by the enzyme.  相似文献   

20.
Type II restriction endonucleases cleave duplex DNA at nucleotide sequences displaying 2-fold symmetry. Our data show that Msp I cleaves single strand oligonucleotides, d(G-A-A-C-C-G-G-A-G-A) and d(T-C-T-C-C-G-G-T-T) at 4 degrees, 25 degrees, and 37 degrees C reaction temperatures. The rate of cleavage of d(G-A-A-C-C-G-G-A-G-A) is several-fold faster than that of d(T-C-T-C-C-G-G-T-T). Single strand phi X174 DNA is also, cleaved by Msp I endonuclease giving well defined fragments. 5'-Nucleotide analysis of the fragments generated from single strand and replicating form DNA suggest that cleavage occurs at the recognition sequence d(C-C-G-G). The data show that Msp I endonuclease cleaves single strand oligonucleotides and prefers a recognition sequence surrounded by purine nucleotides. A general model for endonuclease cleavage of single strand and duplex DNA is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号