首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The hypothesis tested was that disturbances in the sarcoplasmic reticulum (SR) Ca2+-cycling responses to exercise would associate with muscle glycogen reserves. Ten untrained males [peak O2 consumption (VO2 peak) = 3.41 +/- 0.20 (SE) l/min] performed a standardized cycle test (approximately 70% VO2 peak) on two occasions, namely, following 4 days of a high (Hi CHO)- and 4 days of a low (Lo CHO)-carbohydrate diet. Both Hi CHO and Lo CHO were preceded by a session of prolonged exercise designed to deplete muscle glycogen. SR Ca2+ cycling in crude homogenates prepared from vastus lateralis samples indicated higher (P < 0.05) Ca2+ uptake (microM x g protein(-1) x min(-1)) in Hi CHO compared with Lo CHO at 30 min (2.93 +/- 0.10 vs. 2.23 +/- 0.12) and at 67 min (2.77 +/- 0.16 vs. 2.10 +/- 0.12) of exercise, the point of fatigue in Lo CHO. Similar effects (P < 0.05) were noted between conditions for maximal Ca2+-ATPase (microM x g protein(-1) x min(-1)) at 30 min (142 +/- 8.5 vs. 107 +/- 5.0) and at 67 min (130 +/- 4.5 vs. 101 +/- 4.7). Both phase 1 and phase 2 Ca2+ release were 23 and 37% higher (P < 0.05) at 30 min of exercise and 15 and 34% higher (P < 0.05), at 67 min during Hi CHO compared with Lo CHO, respectively. No differences between conditions were observed at rest for any of these SR properties. Total muscle glycogen (mmol glucosyl units/kg dry wt) was higher (P < 0.05) in Hi CHO compared with Lo CHO at rest (+36%), 30 min (+53%), and at 67 min (+44%) of cycling. These results indicate that exercise-induced reductions in SR Ca2+-cycling properties occur earlier in exercise during low glycogen states compared with high glycogen states.  相似文献   

3.
This study investigated the effects of prolonged exercise on muscle sarcoplasmic reticulum (SR) Ca2+ cycling properties and the metabolic responses with and without a session of exercise designed to reduce muscle glycogen reserves while on a normal carbohydrate (CHO) diet. Eight untrained males (VO(2peak) = 3.81 +/- 0.12 L/min, mean +/- SE) performed a standardized cycle-to-fatigue at 55% VO(2peak) while on a normal CHO diet (Norm CHO) and 4 days following prolonged exercise while on a normal CHO diet (Ex+Norm CHO). Compared to rest, exercise in Norm CHO to fatigue resulted in significant reductions (p < 0.05) in Ca2+ uptake (3.17 +/- 0.21 vs. 2.47 +/- 0.12 micromol.(g protein)-1.min-1), maximal Ca2+ ATPase activity (Vmax, 152 +/- 12 vs. 119 +/- 9 micromol.(g protein)-1.min-1) and both phase 1 (15.1 +/- 0.98 vs. 13.1 +/- 0.28 micromol.(g protein)-1.min-1) and phase 2 (6.56 +/- 0.33 vs. 4.91 +/- 0.28 micromol.(g protein)-1.min-1) Ca2+ release in vastus lateralis muscle. No differences were observed between Norm CHO and Ex-Norm CHO in the response of these properties to exercise. Compared with Norm CHO, Ex+Norm CHO resulted in higher (p < 0.05) resting Ca2+ uptake (3.17 +/- 0.21 vs. 3.49 +/- 0.24 micromol.(g protein).min-1 and higher ionophore ratio, defined as the ratio of Vmax measured with and without the Ca2+-ionophore A23187, (2.3 +/- 0.3 vs. 4.4 +/- 0.3 micromol.(g protein).min-1) at fatigue. No differences were observed between conditions in the concentration of muscle glycogen, the high-energy phosphates (ATP and PCr), or metabolites (Pi, Cr, and lactate). Ex+Norm CHO also failed to modify the exercise-induced changes in CHO and fat oxidation. We conclude that prolonged exercise to fatigue performed 4 days following glycogen-depleting exercise while on a normal CHO diet elevates resting Ca2+ uptake and prevents increases in SR membrane permeability to Ca2+ as measured by the ionophore ratio.  相似文献   

4.
Shmygol A  Wray S 《Cell calcium》2005,37(3):215-223
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.  相似文献   

5.
This study investigated alterations in glycogen, catecholamines, and the function of various subcellular membranes of the heart after exhaustive swimming in rats. The rats were exhausted by daily exercise over 1, 3, or 7 consecutive days. Glycogen content of the heart and three selected skeletal muscles was depleted after a single bout of exhaustive exercise. Repeated bouts of exhaustive swimming elicited a depletion of glycogen in only the plantaris and gastrocnemius skeletal muscles. Plasma norepinephrine and epinephrine levels were highly elevated, and cardiac concentrations of these hormones were significantly depleted immediately after all exercise sessions. Cardiac sarcoplasmic reticulum (SR) Ca2+ transport was depressed after a single exhaustive exercise period. After three exercise bouts SR Ca2+ accumulation remained depressed; however, mitochondrial Ca2+ transport was found to be augmented. If the exhaustive exercise protocol was continued up to seven days, only mitochondrial Ca2+ accumulation was depressed. Various parameters of sarcolemmal membrane function were observed to be unaltered after exhaustive exercise. These findings demonstrate that exhaustive swimming exercise in rats is capable of producing significant alterations in the Ca2+ transport capacity of the SR and mitochondrial membrane systems of the heart but is without apparent effect on the sarcolemmal membrane.  相似文献   

6.
Biochemical correlates of fatigue. A brief review   总被引:5,自引:0,他引:5  
Muscle fatigue, defined as a decreased force generating capacity, develops gradually during exercise and is distinct from exhaustion, which occurs when the required force or exercise intensity can no longer be maintained. We have reviewed several biochemical and ionic changes reported to occur in exercising muscle, and analysed the possible effects these changes may have on the electrical and contractile properties of the muscle. There is no evidence that substrate depletion can account for the decreased force generating capacity, but this factor may be important for the rate of energy turnover and be a major determinant for endurance. Increased concentration of inorganic phosphate and hydrogen ions will depress the force generating capacity, but since fatigue can develop gradually without accumulation of these ions they can only be important when aerobic ATP production is insufficient to support the contractions. Evidence is presented showing that a disturbed balance of K+ alone might cause depolarisation block at high stimulation frequencies, but extracellular K+ accumulation does not increase gradually during prolonged dynamic or static exercise, and is therefore not closely related to fatigue. The repeated release of Ca2+ from the sarcoplasmic reticulum (SR) during muscular activity is suggested of Ca2+ by the mitochondria, increasing with stimulation frequency and duration and possibly also deteriorating mitochondrial function. We therefore speculate that decreased Ca2+ availability for release from SR might contribute to a gradual decline in force generating capacity during all types of exercise.  相似文献   

7.
Ca2+ regulation of vascular smooth muscle   总被引:5,自引:0,他引:5  
Regulation of intracellular free Ca2+ concentrations in vascular smooth muscle is accomplished mainly by Ca2+ channels and ATP-dependent Ca2+ pumps in the plasmalemma and sarcoplasmic reticulum (SR). Ca2+ entry through the plasmalemma is apparently mediated by four different pathways: leak; receptor-operated Ca2+ channels; potential sensitive Ca2+ channels; and stretch-activated channels. The agonist releasable intracellular Ca2+ store appears to be identical with the SR. Evidence for the involvement of Ca2+-induced Ca2+ release and inositol-1,4,5-trisphosphate in the release of SR Ca2+ is discussed. Smooth muscle contractions induced by certain agonists may be further enhanced by inhibition of Ca2+ uptake by the SR and of active Ca2+ extrusion across the plasmalemma. At the moment it is not clear from a consideration of the Ca2+ regulatory mechanisms present in vascular smooth muscle how dietary Ca2+ affects vascular tone. The increased Ca2+ permeation through smooth muscle cell membranes of resistance arteries taken from spontaneously hypertensive rats may be relevant to this problem.  相似文献   

8.
In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release channel. In this study, differential T-tubule and SR membrane monovalent ion permeabilities were exploited with the use of an ion-replacement protocol to study T-tubule depolarization-induced SR 45Ca2+ release from rabbit skeletal muscle whole-cell homogenates. Specificity of Ca2+ release was ascertained with the use of the DHPR antagonists D888, nifedipine and PN200-110. In the presence of the "slow" complexing Ca2+ buffer EGTA, homogenates exhibited T-tubule depolarization-induced Ca2+ release comprised of an initial rapid phase followed by a slower release phase. During the rapid phase, approximately 20% of the total sequestered Ca2+ (approximately 30 nmol 45Ca2+/mg protein), corresponding to 100% of the caffeine-sensitive Ca2+ pool, was released within 50 ms. Rapid release could be inhibited fourfold by D888. Addition to release media of the "fast" complexing Ca2+ buffer BAPTA, at concentrations > or = 4 mM, nearly abolished rapid Ca2+ release, suggesting that most was Ca2+ dependent. Addition of millimolar concentrations of either Ca2+ or Mg2+ also greatly reduced rapid Ca2+ release. These results show that T-tubule depolarization-induced SR Ca2+ release from rabbit skeletal muscle homogenates is controlled by T-tubule membrane potential- and by Ca(2+)- dependent mechanisms.  相似文献   

9.
A spectrophotometric method is described for the determination of sarcoplasmic reticulum (SR) Ca2(+)-ATPase activity (EC 3.1.6.38) in unfractionated muscle homogenates. Conditions were established that give maximal SR Ca2(+)-ATPase activity, while eliminating Ca2(+)-dependent myofibrillar ATPase activity and reducing Ca2(+)-independent or background ATPase activity. High [Ca2+] (20 mM) could be used to selectively inhibit the SR Ca2+ ATPase. Identification of the Ca2(+)-dependent ATPase activity in muscle homogenates as being SR Ca2+ ATPase was based on a comparison of several parameters using homogenate material and purified SR. The following parameters were compared and found to be the same in homogenate and SR: activation and inactivation between 0 and 20 mM Ca2+, temperature dependence, sensitivity toward Triton X-100, and the maximal level of inhibition of ATPase activity achieved by an antibody specific for SR Ca2+ ATPase. The method is illustrated with the analysis of homogenates prepared from freeze-dried muscle fibers and thin sections of muscles typically used in microscope analyses as well as an analysis of freshly prepared homogenates from various types of muscle, which shows a good correlation over a wide range between SR specific Ca2(+)-uptake and -ATPase activities. In addition, a simple, easily constructed cuvette is described which allows the analysis of less than 5 micrograms of tissue (wet weight) in a volume of 25 microliters.  相似文献   

10.
The functional capacity of skeletal muscle sarcoplasmic reticulum (SR) was examined in the slow soleus of rats submitted to 15 days of disuse produced by hindlimb suspension (HS). By using caffeine-induced contractions of single skinned fibers, Ca2+ uptake, Ca2+ release, and passive Ca2+ leakage through the SR membrane were investigated. In the SR of atrophied muscles, the amounts of Ca2+ uptake and Ca2+ release were significantly higher than in the control muscles and were close to those found for a fast muscle, the plantaris. Moreover, the study of the Ca2+ leakage showed that the time required to empty the SR previously loaded with Ca2+ was reduced by a factor of two after HS. Such disturbances of the Ca2+ movements in the SR suggested that alterations of the SR membrane occurred after HS. The results supported the idea that after hindlimb unweighting the slow soleus muscle acquired SR properties that were very much like those of a faster muscle.  相似文献   

11.
The effects of ethanol on both Ca2+ pump activity and Ca2+-induced Ca2+ release in sarcoplasmic reticulum (SR) of rabbit skeletal muscle were studied. In concentrations of 0.1-1.0%, ethanol conspicuously enhanced Ca2+ release from the heavy fraction of SR, whereas a much smaller effect was noted in the light fraction. When Ca2+-induced Ca2+ release was inhibited by 10 mM Mg2+, the Ca2+ pump activities of both the heavy and light SR were the same; the activities were not significantly influenced by 1% ethanol. Ethanol itself did not release Ca2+ from the heavy SR. However, it appeared to render the heavy SR more permeable to Ca2+, thereby decreasing the amount of storable Ca2+. This action of ethanol may be related to the mechanism of its negative inotropic effect.  相似文献   

12.
Calsequestrin (CASQ2) is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR). Mutations in the cardiac calsequestrin gene (CASQ2) have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca(2+)-induced Ca2+ release (CICR) and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.  相似文献   

13.
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca(2+)-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O(2) consumption (Vo(2peak)) = 3.45 +/- 0.17 l/min; mean +/- SE] cycled at approximately 60% Vo(2peak) on two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (~1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca(2+) handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15-23% higher (P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased (P < 0.05) by approximately 19% during G (137 +/- 7 min) compared with NG (115 +/- 6 min). Prolonged exercise reduced (P < 0.05) maximal Ca(2+)-ATPase activity (-18.4%), SR Ca(2+) uptake (-27%), and both Phase 1 (-22.2%) and Phase 2 (-34.2%) Ca(2+)-release rates during NG. The exercise-induced reductions in SR Ca(2+)-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca(2+)-handling responses.  相似文献   

14.
The repetition-dependent effects of a repetitive heavy exercise protocol previously shown to alter muscle mechanic behavior (Green HJ, Duhamel TA, Ferth S, Holloway GP, Thomas MM, Tupling AR, Rich SM, and Yau JE. J Appl Physiol 97: 2166-2175, 2004) on muscle sarcoplasmic reticulum (SR) Ca2+-transport properties, measured in vitro, were examined in 12 untrained volunteers [peak aerobic power (VO2(peak)) = 44.3 +/- 0.66 ml x kg(-1) x min(-1)]. The protocol involved 6 min of cycle exercise performed at approximately 91% VO2(peak) once per hour for 16 h. Tissue samples were obtained from the vastus lateralis before (B) and after (A) exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Reductions (P < 0.05) in maximal Ca2+-ATPase activity (Vmax) of 26 and 12% with exercise were only observed at R1 and R16, respectively. Vmax remained depressed (P < 0.05) at R2 (B) but not at R9 (B) and R16 (B). No changes were observed in two other kinetic properties of the enzyme, namely the Hill coefficient (defined as the slope of the relationship between Ca2+-ATPase activity and free Ca2+ concentration) and the Ca50 (defined as the free Ca2+ concentration needed to elicit 50% Vmax). Changes in Ca2+ uptake (measured at 2,000 nM) with exercise and recovery generally paralleled Vmax. The apparent coupling ratio, defined as the ratio between Ca2+ uptake and Vmax, was unaffected by the intermittent protocol. Reductions (P < 0.05) in phase 1 Ca2+ release (32%) were only observed at R1. No differences were observed between B and A for R2, R9, and R16 or between B and B for R1, R2, R9, and R16. The changes in phase 2 Ca2+ release were as observed for phase 1 Ca2+ release. It is concluded that the SR Ca2+-handling properties, in general, display rapid adaptations to repetitive exercise.  相似文献   

15.
The purpose of the present study was to investigate the effects of fatiguing muscular activity on glycogen, glycogen phosphorylase (GP), and Ca(2+) uptake associated with the sarcoplasmic reticulum (SR). Tetanic contractions (100 ms, 75 Hz) of the gastrocnemius and plantaris muscles, elicited once per second for 15 min, significantly reduced force to 26.5 +/- 4.0% and whole muscle glycogen to 23% of rested levels. SR glycogen levels were 415.4 +/- 76.6 and 20.4 +/- 2.1 microg/mg SR protein in rested and fatigued samples, respectively. The optical density of GP from SDS-PAGE was reduced to 21% of control, whereas pyridoxal 5'-phosphate concentration, a quantitative indicator of GP content, was significantly reduced to 3% of control. GP activity after exercise, in the direction of glycogen breakdown, was reduced to 4% of control. Maximum SR Ca(2+) uptake rate was also significantly reduced to 81% of control. These data demonstrate that glycogen and GP associated with skeletal muscle SR are reduced after fatiguing activity.  相似文献   

16.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

17.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

18.
In cardiac muscle and amphibian skeletal muscle, the intracellular Ca2+ release that signals contractile activation proceeds by discrete local packets, which result in Ca2+ sparks. The remarkably stereotyped duration of these release events requires a robustly timed termination mechanism. In cardiac muscle the mechanism of spark termination appears to crucially involve depletion of Ca2+ in the lumen of the sarcoplasmic reticulum (SR), but in skeletal muscle, the mechanism is unknown. We used SEER (shifted excitation and emission ratioing of fluorescence) of SR-trapped mag-indo-1 and confocal imaging of fluorescence of cytosolic rhod-2 to image Ca2+ sparks while reversibly changing and measuring [Ca2+] in the SR ([Ca2+]SR) of membrane-permeabilized frog skeletal muscle cells. Sparks were collected in cells immersed in a solution promoting production of events at moderate frequency. Just after permeabilization, event frequency was zero, and in 10 minutes it reached close to a steady value. Controlled interventions modified [Ca2+]SR reversibly between a low value (299 microM on average in 10 experiments) and a high value (433 microM, a 45% average increase). This change increased sparks frequency by 93%, spatial width by 7%, rise time by 10%, and peak amplitude by 38% (provided that it was calculated in absolute terms, rather than normalized by resting fluorescence). The changes in event frequency and amplitude were statistically significant. The "strength" of the effect of [Ca2+]SR on frequency, quantified by decomposition of variance, was <6%. While the average change in [Ca2+]SR was limited, it reached up to 200% in individual fibers, without causing massive Ca2+ release or an increase of >3.5-fold in event frequency. Taken together with existing evidence that depletion is modest during Ca2+ sparks or release elicited by an action potential, the mild effects of [Ca2+]SR reported here do not support a major role of depletion in either the termination of sparks or the strong inactivation that terminates Ca2+ release at the global level in frog skeletal muscle.  相似文献   

19.
Using the fluorescent probes, Quin 2 and chlortetracycline, a comparative study of the Ca2+ and inositol-1.4.5-triphosphate (IP3)-induced Ca2+ release from rabbit skeletal muscle sarcoplasmic reticulum (SR) terminal cisterns and rat brain microsomal vesicles was carried out. It was shown that Ca2+ release from rat brain microsomal vesicles is induced both by IP3 and Ca2+, whereas that in SR terminal cisterns is induced only by Ca2+. Data from chlorotetracycline fluorescence analysis revealed that CaCl2 (50 microM) causes the release of 15-20% and 40-50% of the total Ca2+ pool accumulated in rat brain microsomal vesicles and rabbit SR terminal cisterns, respectively. Using Quin 2, it was found that IP3 used at the optimal concentration (1.5 mM) caused the release of 0.4-0.6 nmol of Ca2+ per mg microsomal protein, which makes up to 10-15% of the total Ca2+ pool. IP3 does not induce Ca2+ release in SR. Preliminary release of Ca2+ from brain microsomes induced by IP3 diminishes the liberation of this cation induced by Ca2+. It is suggested that brain microsomes contain a Ca2+ pool which is exhausted under the action of the both effectors, Ca2+ and IP3.  相似文献   

20.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号