首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Regulation of Stat3 activation by MEK kinase 1   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
8.
STAT-mediated EGFR signaling in cancer   总被引:6,自引:0,他引:6  
  相似文献   

9.
10.
11.
12.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

13.
14.
15.
16.
Stat3是信号传导与转录激活因子家族(STATs)的成员之一,是一种重要的核转录因子,被细胞外细胞因子、生长因子等多肽类配体激活,作用于细胞核内特异的DNA片段,调控靶基因的转录,促进肿瘤细胞的增殖、血管形成、侵袭转移及免疫逃逸。诸多肿瘤细胞系及人的癌变组织中存在Stat3持续激活,因而Stat3有可能成为肿瘤分子治疗的新靶点。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号