首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the role of luminal nutrients and glucagon-like peptide-2 (GLP-2) in intestinal adaptation, rats were subjected to 70% midjejunoileal resection or ileal transection and were maintained with total parenteral nutrition (TPN) or oral feeding. TPN rats showed small bowel mucosal hyperplasia at 8 h through 7 days after resection, demonstrating that exogenous luminal nutrients are not essential for resection-induced adaptation when residual ileum and colon are present. Increased enterocyte proliferation was a stronger determinant of resection-induced mucosal growth in orally fed animals, whereas decreased apoptosis showed a greater effect in TPN animals. Resection induced significant transient increases in plasma bioactive GLP-2 during TPN, whereas resection induced sustained increases in plasma GLP-2 during oral feeding. Resection-induced adaptive growth in TPN and orally fed rats was associated with a significant positive correlation between increases in plasma bioactive GLP-2 and proglucagon mRNA expression in the colon of TPN rats and ileum of orally fed rats. These data support a significant role for endogenous GLP-2 in the adaptive response to mid-small bowel resection in both TPN and orally fed rats.  相似文献   

2.
We recently demonstrated that luminal factors such as osmolality, disaccharides, and mechanical stimulation evoke pancreatic secretion by activating 5-hydroxytryptamine subtype 3 (serotonin-3, 5-HT3) receptors on mucosal vagal afferent fibers in the intestine. We hypothesized that 5-HT released by luminal stimuli acts as a paracrine substance, activating the mucosal vagal afferent fibers to stimulate pancreatic secretion. In the in vivo rat model, luminal perfusion of maltose or hypertonic NaCl increased 5-HT level threefold in intestinal effluent perfusates. Similar levels were observed after intraluminal 10(-5) M 5-HT perfusion. These treatments did not affect 5-HT blood levels. In a separate study, intraduodenal, but not intraileal, 5-HT application induced a dose-dependent increase in pancreatic protein secretion, which was not blocked by the CCK-A antagonist CR-1409. Acute vagotomy, methscopolamine, or perivagal or intestinal mucosal application of capsaicin abolished 5-HT-induced pancreatic secretion. In conscious rats, luminal 10(-5) M 5-HT administration produced a 90% increase in pancreatic protein output, which was markedly inhibited by the 5-HT3 antagonist ondansetron. In conclusion, luminal stimuli induce 5-HT release, which in turn activates 5-HT3 receptors on mucosal vagal afferent terminals. In this manner, 5-HT acts as a paracrine substance to stimulate pancreatic secretion via a vagal cholinergic pathway.  相似文献   

3.
Luminal nutrients are essential for the growth and maintenance of digestive tissue including the pancreas and small intestinal mucosa. Long-term loss of luminal nutrients such as during animal hibernation has been shown to result in mucosal atrophy and a corresponding stress response characterized by the induction of heat shock protein (Hsp)70 expression. This study was conducted to determine if the loss of luminal nutrients during total parenteral nutrition (TPN) would result in atrophy of the exocrine pancreas and small intestinal mucosa as well as an induction of Hsp70 expression in rats. In experiment 1, the treatment groups included an orally fed control, a saline-infused surgical control, or TPN treatment for 7 days. In experiment 2, the treatment groups included an orally fed control and TPN alone or coinfused with varying doses of glucagon-like peptide (GLP)-2, a mucosal proliferation agent, for 7 days. In experiment 1, TPN resulted in a 40% reduction in pancreatic mass that was associated with a dramatic reduction in digestive enzyme expression, enhanced apoptosis, and a 200% increase in Hsp70 expression. Conversely, heat shock cognate 70, Hsp27, and Hsp60 expression was not changed in the pancreas. In experiment 2, TPN resulted in a 30% reduction in jejunal mucosa mass and a similar induction of Hsp70 expression. The inclusion of GLP-2 during TPN attenuated jejunal mucosal atrophy and inhibited Hsp70 expression, suggesting that Hsp70 induction is sensitive to cell growth. These data indicate that pancreatic and intestinal mucosal atrophy caused by a loss of luminal nutrient stimulation is accompanied by a compensatory response involving Hsp70.  相似文献   

4.
Recent studies demonstrated that cholecystokinin (CCK) at physiological levels stimulates pancreatic enzyme secretion via a capsaicin-sensitive afferent vagal pathway. This study examined whether chemical ablation of afferent vagal fibers influences pancreatic growth and secretion in rats. Bilateral subdiaphragmatic vagal trunks were exposed, and capsaicin solution was applied. Pancreatic wet weight and pancreatic secretion and growth in response to endogenous and exogenous CCK were examined 7 days after capsaicin treatment. Perivagal application of capsaicin increased plasma CCK levels and significantly increased pancreatic wet weight compared with those in the control rats. Oral administration of CCK-1 receptor antagonist loxiglumide prevented the increase in pancreatic wet weight after capsaicin treatment. In addition, continuous intraduodenal infusion of trypsin prevented the increase in plasma CCK levels and pancreatic wet weight after capsaicin treatment. There were no significant differences in the expression levels of CCK-1 receptor mRNA and protein in the pancreas in capsaicin-treated and control rats. Intraduodenal administration of camostat or intravenous infusion of CCK-8 stimulated pancreatic secretion in control rats but not in capsaicin-treated rats. In contrast, repeated oral administrations of camostat or intraperitoneal injections of CCK-8 significantly increased pancreatic wet weight in both capsaicin-treated and control rats. Present results suggest that perivagal application of capsaicin stimulates pancreatic growth via an increase in endogenous CCK and that exogenous and endogenous CCK stimulate pancreatic growth not via vagal afferent fibers but directly in rats.  相似文献   

5.
The gastric mucosa, in particular submucosal blood vessels, are innervated by afferent neurons containing neuropeptides such as calcitonin gene-related peptide. Stimulation of sensory neurons innervating the gastric mucosa increases submucosal blood flow. Since sensory neurons supplying the stomach are of dual origin from nodose and dorsal root ganglia, we examined the effect of selective ablation of either the vagal or spinal sensory innervation to the upper gastrointestinal tract on the increase in gastric mucosal blood flow in response to acid back diffusion into the gastric mucosa. Perineural application of capsaicin to the celiac/superior mesenteric ganglia, but not to the vagus nerves, significantly inhibited by 53% the hyperemic response to acid back diffusion. Tissue levels of immunoreactive calcitonin gene-related peptide in the gastric corpus were significantly reduced (by 73%) by periceliac capsaicin treatment, but unaffected by perivagal capsaicin treatment. These data suggest that spinal capsaicin-sensitive afferents containing calcitonin gene-related peptide immunoreactivity are involved in mediating increases in gastric mucosal blood flow. This increase in gastric mucosal blood flow mediated by sensory neurons may act as a protective mechanism against mucosal injury, similar to responses seen in other tissues such as skin.  相似文献   

6.
The central nervous system modulates inflammation in the gastrointestinal tract via efferent vagal pathways. We hypothesized that these vagal efferents receive synaptic input from vagal afferents, representing an autonomic feedback mechanism. The consequence of this vagovagal reflex for afferent signal generation in response to LPS was examined in the present study. Different modifications of the vagal innervation or sham procedures were performed in anesthetized rats. Extracellular mesenteric afferent nerve discharge and systemic blood pressure were recorded in vivo before and after systemic administration of LPS (6 mg/kg iv). Mesenteric afferent nerve discharge increased dramatically following LPS, which was unchanged when vagal efferent traffic was eliminated by acute vagotomy. In chronically vagotomized animals, to eliminate both vagal afferent and efferent traffic, the increase in afferent firing 3.5 min after LPS was reduced to 3.2 +/- 2.5 impulses/s above baseline compared with 42.2 +/- 2.0 impulses/s in controls (P < 0.001). A similar effect was observed following perivagal capsaicin, which was used to eliminate vagal afferent traffic only. LPS also caused a transient hypotension (<10 min), a partial recovery, and then persistent hypertension that was exacerbated by all three procedures. Mechanosensitivity was increased 15 min following LPS but had recovered at 30 min in all subgroups except for the chronic vagotomy group. In conclusion, discharge in capsaicin-sensitive mesenteric vagal afferents is augmented following systemic LPS. This activity, through a vagovagal pathway, helps to attenuate the effects of septic shock. The persistent hypersensitivity to mechanical stimulation after chronic vagal denervation suggests that the vagus exerts a regulatory influence on spinal afferent sensitization following LPS.  相似文献   

7.
Luminal nutrients stimulate structural and functional regeneration in the intestine through mechanisms thought to involve insulin-like growth factor I (IGF-I) and glucagon-like peptide-2 (GLP-2). We investigated the relationship between IGF-I and GLP-2 responses and mucosal growth in rats fasted for 48 h and then refed for 2 or 4 days by continuous intravenous or intragastric infusion or ad libitum feeding. Fasting induced significant decreases in body weight, plasma concentrations of IGF-I and bioactive GLP-2, jejunal mucosal cellularity (mass, protein, DNA, and villus height), IGF-I mRNA, and ileal proglucagon mRNA. Plasma IGF-I concentration was restored to fed levels with 2 days of ad libitum refeeding but not with 4 days of intravenous or intragastric refeeding. Administration of an inhibitor of endogenous GLP-2 (rat GLP-2 3-33) during ad libitum refeeding partially attenuated mucosal growth and prevented the increase in plasma IGF-I to fed levels; however, plasma GLP-2 and jejunal IGF-I mRNA were restored to fed levels. Intragastric refeeding restored intestinal cellularity and functional capacity (sucrase activity and sodium-glucose transporter-1 expression) to fed levels, whereas intravenous refeeding had no effect. Intestinal regeneration after 4 days of intragastric or 2 days of ad libitum refeeding was positively associated with increases in plasma concentrations of GLP-2 and jejunal IGF-I mRNA. These data suggest that luminal nutrients stimulate intestinal growth, in part, by increased expression of both GLP-2 and IGF-I.  相似文献   

8.
In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in response to intestinal perfusion of 5-HT (from 1.5 +/- 0.2 to 25 +/- 4 impulses/20 s) but no response to intestinal distension. A close intra-arterial injection of secretin (2.5 and 5.0 pmol) elicited responses in 15 of these 19 neurons (from 1.5 +/- 0.2 impulses/20 s at basal to 21 +/- 4 and 43 +/- 5 impulses/20 s, respectively). Subdiaphragmatic vagotomy and perivagal application of capsaicin, but not supranodose vagotomy, completely abolished the secretin-elicited vagal nodose neuronal response. In a separate study, 9 tension receptor afferents among 91 neurons responded positively to intestinal distension but failed to respond to luminal 5-HT. These nine neurons also showed no response to administration of secretin. As expected, immunohistochemical studies showed that secretin administration significantly increased the number of Fos-positive neurons in vagal nodose ganglia. In conclusion, we demonstrated for the first time that vagal sensory neurons are activated by secretin at physiological concentrations. A subpopulation of secretin-sensitive vagal afferent fibers is located in the intestinal mucosa, many of which are responsive to luminal 5-HT.  相似文献   

9.
Glucagon-like peptide-2 (GLP-2) is an intestinal trophic enteroendocrine peptide that is associated with intestinal adaptation following resection. Herein, we investigate the effects of GLP-2 in a total parenteral nutrition (TPN)-supported model of experimental short bowel syndrome. Juvenile Sprague-Dawley rats underwent a 90% small intestinal resection and jugular catheter insertion. Rats were randomized to three groups: enteral diet and intravenous saline infusion, TPN only, or TPN + 10 microg.kg(-1).h(-1) GLP-2. Nutritional maintenance was isocaloric and isonitrogenous. After 7 days, intestinal permeability was assessed by quantifying the urinary recovery of gavaged carbohydrate probes. The following day, animals were euthanized, and intestinal tissue was processed for morphological and crypt cell proliferation (CCP) analysis, apoptosis (caspase-3), and expression of SGLT-1 and GLUT-5 transport proteins. TPN plus GLP-2 treatment resulted in increased bowel and body weight, villus height, intestinal mucosal surface area, CCP, and reduced intestinal permeability compared with the TPN alone animals (P < 0.05). GLP-2 treatment induced increases in serum GLP-2 levels and intestinal SGLT-1 expression (P < 0.01) compared with either TPN or enteral groups. No differences were seen in the villus apoptotic index between resection groups. Enterally fed resected animals had a significant decrease in crypt apoptotic indexes compared with nontreated animals. This study demonstrates that GLP-2 alone, without enteral feeding, stimulates indexes of intestinal adaptation. Secondly, villus hypertrophy associated with adaptation was predominantly due to an increase in CCP and not to changes in apoptotic rates. Further studies are warranted to establish the mechanisms of action and therapeutic potential of GLP-2.  相似文献   

10.
Perivagal capsaicin treatment and vagal cooling are two techniques that have been widely used to study the respiratory reflexes mediated by lung vagal C-fibers because they can block the neural conduction of unmyelinated fibers. We hypothesized that there are two subgroups of lung vagal C-fibers which have different vulnerabilities to blockades by these two techniques. To test this hypothesis, afferent activity arising from lung vagal C-fibers was recorded in 29 anesthetized, paralyzed, and artificially ventilated dogs. Afferent C-fiber activity was recorded before and after various concentrations of perivagal capsaicin treatment or before and during various temperatures of vagal cooling. Of the 89 lung vagal C-fibers studied, 73 fibers were classified as the group of "low resistance" to capsaicin, while the other 16 were classified as the group of "high resistance". The former group differed from the latter due to their afferent activity being blocked at relatively low concentrations of perivagal capsaicin and at relatively low temperatures of vagal cooling. Our results suggest that lung vagal C-fibers can be categorized into two subgroups, based upon their different blocking thresholds for perivagal capsaicin and vagal cooling. Our data may provide information for researchers to further differentiate the respiratory reflexes originating from these two subgroups of lung vagal C-fibers.  相似文献   

11.
Dietary resistant starch increases hypothalamic POMC expression in rats   总被引:1,自引:0,他引:1  
Resistant starch (RS) is fermentable dietary fiber. Inclusion of RS in the diet causes decreased body fat accumulation and altered gut hormone profile. This study investigates the effect of feeding RS on the neuropeptide messenger RNA (mRNA) expressions in the arcuate nucleus (ARC) of the hypothalamus and whether vagal afferent nerves are involved. The rats were injected intraperitoneally with capsaicin to destroy unmyelinated small vagal afferent nerve fibers. The cholecystokinin (CCK) food suppression test was performed to validate the effectiveness of the capsaicin treatment. Then, capsaicin-treated rats and vehicle-treated rats were subdivided into a control diet or a RS diet group, and fed the corresponding diet for 65 days. At the end of study, body fat, food intake, plasma peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), and hypothalamic pro-opiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AgRP) gene expressions were measured. RS-fed rats had decreased body fat, increased POMC expression in the hypothalamic ARC, and elevated plasma PYY and GLP-1 in both the capsaicin and vehicle-treated rats. Hypothalamic NPY and AgRP gene expressions were not changed by RS or capsaicin. Therefore, destruction of the capsaicin-sensitive afferent nerves did not alter the response to RS in rats. These findings suggest that dietary RS might reduce body fat through increasing the hypothalamic POMC expression and vagal afferent nerves are not involved in this process. This is the first study to show that dietary RS can alter hypothalamic POMC expression.  相似文献   

12.
Our objective was to determine if exogenous insulin-like growth factor-I (IGF-I) augments the adaptive growth response to mid small bowel resection in association with changes in enterocyte kinetics. We determined structural adaptation and concomitant changes in enterocyte proliferation, apoptosis, and migration of the jejunum in growing, parenterally fed rats after mid small bowel resection or small bowel transection, and treatment with IGF-I or vehicle. IGF-I treatment in resected rats significantly increased jejunal mucosal mass by 20% and mucosal concentrations of protein and DNA by 36 and 33%, respectively, above the response to resection alone. The enhancement of resection-induced adaptive growth and cellularity by IGF-I reflected an increase in enterocyte proliferation, an expansion of the proliferative compartment in the crypt, and no further decrease in enterocyte apoptosis or increase in enterocyte migration beyond the effects of resection. The ability of IGF-I to augment the mucosal hyperplasia stimulated by the endogenous response to resection substantiates the role of IGF-I as an intestinal mitogen that promotes tissue regeneration.  相似文献   

13.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

14.
Existing data on morphological adaptation after small bowel resection are obtained by potentially biased methods. Using stereological techniques, we examined segments of bowel on days 0, 4, 7, 14, and 28 after 80% jejunoileal resection or sham operation in rats and correlated intestinal growth with plasma levels of glucagon-like peptide-2 (GLP-2). In the jejunum and ileum of the resected rats, the mucosal weight increased by 120 and 115% during the first week, and the weight of muscular layer increased by 134 and 83%, compared with sham-operated controls. The luminal surface area increased by 190% in the jejunum and by 155% in the ileum after 28 days. The GLP-2 level was increased by 130% during the entire study period in the resected rats. Small bowel resection caused a pronounced and persistent transmural growth response in the remaining small bowel, with the most prominent growth occurring in the jejunal part. The significantly elevated GLP-2 level is consistent with an important role of GLP-2 in the adaptive response.  相似文献   

15.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

16.
Abstract. There is marked intestinal hypoplasia in the intestine of intravenously fed (TPN) rats. Recombinant urogastrone-epidermal growth factor (URO-EGF) reversed these changes by significantly increasing the length of the intestinal crypts. Crypt diameter, however, was not affected to the same extent. Few differences in labelling indices were seen between the orally fed and TPN groups, however, this was the consequence of the concomitant changes in crypt population.
The number of mitoses and labelled cells per crypt, and thus the crypt cell production rates, were significantly decreased in the TPN group when compared to the orally fed. URO-EGF significantly increased both proliferative indices and the number of dividing cells per crypt. Crypt cell production in the small intestine was restored to those levels seen in the orally fed rats, moreover, labelling per crypt in the colon was increased to more than twice that of orally fed rats. The location of the mean labelling position and the half maximum labelling position followed the changes in crypt length in the small intestine, but to a lesser extent; thus the growth fraction was significantly increased in the TPN rats in comparison with the orally fed and the URO-EGF treated groups. Similar changes in these positions were seen in the colon, but the growth fraction was much reduced in the URO-EGF treated rats, as a consequence of the large increase in crypt length without a concomitant alteration in label distribution.  相似文献   

17.
Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, intestinotrophic hormone derived from posttranslational processing of proglucagon in the distal bowel. GLP-2 is thought to act through indirect mediators, such as IGF-I. We investigated whether intestinal expression of GLP-2 and IGF-I system components are increased with the mucosal growth induced by enteral nutrient (EN) and/or a low dose of GLP-2 in parenterally fed rats. Rats were randomized to four treatment groups using a 2 x 2 design and maintained with parenteral nutrition (PN) for 7 days: PN alone, EN, GLP-2, and EN+GLP-2; n = 7-9. The two main treatment effects are +/-GLP-2 (100 microg.kg body wt(-1).day(-1)) and +/-EN (43% of energy needs, days 4-6). Combination treatment with EN+GLP-2 induced synergistic intestinal growth in ileum, resulting in greater mucosal cellularity, sucrase segmental activity, and gain of body weight (ENxGLP-2, P < 0.04). In addition, EN+GLP-2 induced a significant 28% increase in plasma concentration of bioactive GLP-2, a significant 102% increase in ileal proglucagon mRNA with no change in ileal dipeptidyl peptidase-IV (DPP-IV) specific activity, and significantly reduced plasma DPP-IV activity compared with GLP-2. This indicates that EN potentiates the intestinotrophic action of GLP-2. Proliferation of enterocytes due to GLP-2 infusion was associated with greater expression of ileal proglucagon, GLP-2 receptor, IGF-I, IGF binding protein-3 mRNAs, and greater IGF-I peptide concentration in ileum (P < 0.032). Ileal IGF-I mRNA was positively correlated with expression of proglucagon, GLP-2R, and IGFBP-5 mRNAs (R2 = 0.43-0.56, P < 0.0001). Our findings support the hypothesis that IGF-I is one of the downstream mediators of GLP-2 action in a physiological model of intestinal growth.  相似文献   

18.
Glucagon-like peptide-2 (GLP-2) is an enteroendocrine peptide that is released in response to luminal nutrients and has unique trophic actions in the gastrointestinal tract. These features suggest GLP-2 may be important in controlling intestinal adaptation. We examined the relationship over time of GLP-2 production and adaptation to intestinal resection, the effects of resection-induced malabsorption on GLP-2 production, and the correlation of endogenous serum GLP-2 levels with adaptation as measured by crypt-cell proliferation (CCP). We initially examined the effect of nutrient malabsorption, induced by a 90% resection of the proximal intestine studied on day 4, on the time course and levels of GLP-2 release. Secondly, the degree of malabsorption was varied by performing intestinal transection or 50, 75, or 90% resection of proximal small intestine. Finally, the relationship of GLP-2 levels over time with adaptation to a 90% resection was examined by determining GLP-2 levels on days 7, 14, and 28, and correlating this with intestinal adaptation, as assessed by morphology and CCP rate. A 90% resection significantly increased basal and postprandial GLP-2 levels, with a net increase in nutrient-stimulated exposure over 90 min; GLP-2 exposure (integrated levels vs. time) increased 12.7-fold in resected animals (P < 0.001). Basal and postprandial GLP-2 levels significantly correlated with the magnitude of intestinal resection (r(2) = 0.71; P < 0.001), CCP (r(2) = 0.48; P < 0.005), and nutrient malabsorption (protein, P < 0.001; fat, P < 0.005). The increase in CCP was maintained to 28 days after small bowel resection and was associated with an ongoing elevation in GLP-2 release. These findings suggest that GLP-2 is important in initiating and maintaining the small intestinal adaptive response to resection.  相似文献   

19.
Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that shows promise for the treatment of short bowel syndrome (SBS). Our objective was to investigate how combination GLP-2 + enteral nutrients (EN) affects intestinal adaption in a rat model that mimics severe human SBS and requires parenteral nutrition (PN). Male Sprague-Dawley rats were assigned to one of five groups and maintained with PN for 18 days: total parenteral nutrition (TPN) alone, TPN + GLP-2 (100 μg·kg(-1)·day(-1)), PN + EN + GLP-2(7 days), PN + EN + GLP-2(18 days), and a nonsurgical oral reference group. Animals underwent massive distal bowel resection followed by jejunocolic anastomosis and placement of jugular catheters. Starting on postoperative day 4, rats in the EN groups were allowed ad libitum access to EN. Groups provided PN + EN + GLP-2 had their rate of PN reduced by 0.25 ml/day starting on postoperative day 6. Groups provided PN + EN + GLP-2 demonstrated significantly greater body weight gain with similar energy intake and a safe 80% reduction in PN compared with TPN ± GLP-2. Groups provided PN + EN + GLP-2 for 7 or 18 days showed similar body weight gain, residual jejunal length, and digestive capacity. Groups provided PN + EN + GLP-2 showed increased jejunal GLP-2 receptor (GLP-2R), insulin-like growth factor-I (IGF-I), and IGF-binding protein-5 (IGFBP-5) expression. Treatment with TPN + GLP-2 demonstrated increased jejunal expression of epidermal growth factor. Cessation of GLP-2 after 7 days with continued EN sustained the majority of intestinal adaption and significantly increased expression of colonic proglucagon compared with PN + EN + GLP-2 for 18 days, and increased plasma GLP-2 concentrations compared with TPN alone. In summary, EN potentiate the intestinotrophic actions of GLP-2 by improving body weight gain allowing for a safe 80% reduction in PN with increased jejunal expression of GLP-2R, IGF-I, and IGFBP-5 following distal bowel resection in the rat.  相似文献   

20.
Total parenteral nutrition (TPN) is essential for patients with impaired gut function but leads to parenteral nutrition-associated liver disease (PNALD). TPN disrupts the normal enterohepatic circulation of bile acids, and we hypothesized that it would decrease intestinal expression of the newly described metabolic hormone fibroblast growth factor-19 (FGF19) and also glucagon-like peptides-1 and -2 (GLP-1 and GLP-2). We tested the effects of restoring bile acids by treating a neonatal piglet PNALD model with chenodeoxycholic acid (CDCA). Neonatal pigs received enteral feeding (EN), TPN, or TPN + CDCA for 14 days, and responses were assessed by serum markers, histology, and levels of key regulatory peptides. Cholestasis and steatosis were demonstrated in the TPN group relative to EN controls by elevated levels of serum total and direct bilirubin and also bile acids and liver triglyceride (TG) content. CDCA treatment improved direct bilirubin levels by almost fourfold compared with the TPN group and also normalized serum bile acids and liver TG. FGF19, GLP-1, and GLP-2 were decreased in plasma of the TPN group compared with the EN group but were all induced by CDCA treatment. Intestinal mucosal growth marked by weight and villus/crypt ratio was significantly reduced in the TPN group compared with the EN group, and CDCA treatment increased both parameters. These results suggest that decreased circulating FGF19 during TPN may contribute to PNALD. Moreover, we show that enteral CDCA not only resolves PNALD but acts as a potent intestinal trophic agent and secretagogue for GLP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号