首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila, developmental signaling via the transmembrane Notch receptor modulates branching morphogenesis and neuronal differentiation. To determine whether the notch gene family can regulate mammalian organogenesis, including neuroendocrine cell differentiation, we evaluated developing murine lung. After demonstrating gene expression for notch-1, notch-2, notch-3, and the Notch ligands jagged-1 and jagged-2 in embryonic mouse lung, we tested whether altering expression of these genes can modulate branching morphogenesis. Branching of embryonic day (E) 11.5 lung buds increased when they were treated with notch-1 antisense oligodeoxynucleotides in culture compared with the corresponding sense controls, whereas notch-2, notch-3, jagged-1, or jagged-2 antisense oligos had no significant effect. To assess cell differentiation, we immunostained lung bud cultures for the neural/neuroendocrine marker PGP9.5. Antisense to notch-1 or jagged-1 markedly increased numbers of PGP9.5-positive neuroendocrine cells alone without affecting neural tissue, whereas only neural tissue was promoted by notch-3 antisense in culture. There was no significant effect on cell proliferation or apoptosis in these antisense experiments. Cumulatively, these observations suggest that interactions between distinct Notch family members can have diverse tissue-specific regulatory functions during development, arguing against simple functional redundancy.  相似文献   

2.
3.
The mechanisms that regulate cell fate within the pronephros are poorly understood but are important for the subsequent development of the urogenital system and show many similarities to nephrogenesis in the definitive kidney. Dynamic expression of Notch-1, Serrate-1, and Delta-1 in the developing Xenopus pronephros suggests a role for this pathway in cell fate segregation. Misactivation of Notch signaling using conditionally active forms of either Notch-1 or RBP-J/Su(H) proteins prevented normal duct formation and the proper expression of genetic markers of duct cell differentiation. Inhibition of endogenous Notch signaling elicited the opposite effect. Taken together with the mRNA expression patterns, these data suggest that endogenous Notch signaling functions to inhibit duct differentiation in the dorsoanterior region of the anlage where cells are normally fated to form tubules. In addition, elevated Notch signaling in the pronephric anlage both perturbed the characteristic pattern of the differentiated tubule network and increased the expression of early markers of pronephric precursor cells, Pax-2 and Wilms' tumor suppressor gene (Wt-1). We propose that Notch signaling plays a previously unrecognized role in the early selection of duct and tubule cell fates as well as functioning subsequently to control tubule cell patterning and development.  相似文献   

4.
Strikingly increased expression of notch-1 has been demonstrated in several human malignancies and pre-neoplastic lesions. However, the functional consequences of notch-1 overexpression in transformed cells remain unclear. We investigated whether endogenously expressed notch-1 controls cell fate determination in mouse erythroleukemia (MEL) cells during pharmacologically induced differentiation. We found that notch-1 expression is modulated during MEL cell differentiation. Premature downregulation of notch-1 during differentiation, by antisense S-oligonucleotides or by enforced expression of antisense notch-1 mRNA, causes MEL cells to abort the differentiation program and undergo apoptosis. Downregulation of notch-1 expression in the absence of differentiation inducer increases the likelihood of spontaneous apoptosis. We conclude that in MEL cells, endogenous notch-1 expression controls the apoptotic threshold during differentiation and growth. In these cells, notch-1 allows differentiation by preventing apoptosis of pre-committed cells. This novel function of notch-1 may play a role in regulating apoptosis susceptibility in notch-1 expressing tumor cells.  相似文献   

5.
Notch signaling is a potential therapeutic target for various solid and hematopoietic malignancies. We have recently shown that downregulation of Notch-1 expression has significant anti-neoplastic activity in pre-clinical models. However, the mechanisms through which Notch modulation may affect cell fate in cancer remain poorly understood. We had previously shown that Notch-1 prevents apoptosis and is necessary for pharmacologically induced differentiation in murine erythroleukemia (MEL) cells. We investigated the mechanisms of these effects using three experimental strategies: (1) MEL cells stably transfected with antisense Notch-1 or constitutively active Notch-1, (2) activation of Notch-1 by a cell-associated ligand, and (d3) activation of Notch-1 by a soluble peptide ligand. We show that: (1) downregulation of Notch-1 sensitizes MEL cells to apoptosis induced by a Ca(2+) influx or anti-neoplastic drugs; (2) Notch-1 downregulation induces phosphorylation of c-Jun N-terminal kinase (JNK) while constitutive activation of Notch-1 or prolonged exposure to a soluble Notch ligand abolishes it; (3) Notch-1 has dose- and time-dependent effects on the levels of apoptotic inhibitor Bcl-x(L) and cell cycle regulators p21(cip1/waf1), p27(kip1), and Rb; and (4) Notch-1 activation by a cell-associated ligand is accompanied by rapid and transient induction of NF-kappaB DNA-binding activity. The relative effects of Notch-1 signaling on these pathways depend on the levels of Notch-1 expression, the mechanism of activation, and the timing of activation. The relevance of these findings to the role of Notch signaling in differentiation and cancer are discussed.  相似文献   

6.
7.
8.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

9.
Characterization of tissue specific expression of Notch-1 in human tissues   总被引:2,自引:0,他引:2  
Signaling through the Notch cell surface receptors is a highly conserved mechanism of cell fate specification. Notch signaling regulates proliferation, differentiation and cell death. In vertebrates, putative gene duplication has originated four Notch genes, Notch-1, -2, -3 and -4. They have been implicated in neurogenesis, hematopoiesis, T-cell development, vasculogenesis and brain cortical growth. We have investigated Notch-1 distribution in normal human tissues by immunohistochemistry and immunoblot. We detected widespread expression of Notch-1 cytoplasmatic staining, with different tissue distributions in the different organs examined. In particular, high expression of Notch-1 was detected in the intermediate suprabasal layers, but not in the dead cells at the extreme periphery of stratified epithelia. Moreover, a low/intermediate level of Notch-1 was observed in lymphocytes in several peripheral lymphoid tissues; in particular the germinal centers of lymph nodes showed the most abundant number of positive cells, which appeared to be centroblasts/immunoblasts based on nuclear morphology. Notch-1 participates in keratinocytes differentiation. We showed by Western blot analysis that Notch-1 level was clearly increased in HaCaT cells after Ca(++) addition and remained substantially elevated until late differentiation stages. These results suggest that Notch-1 may function in numerous cell types in processes beyond cell fate determination, such as neuronal plasticity, muscle hypertrophy, liver regeneration, and germinal center lymphopoiesis during the immune response.  相似文献   

10.
11.
12.
13.
The Notch family of transmembrane receptors have been implicated in a variety of cellular decisions in different cell types. Here we investigate the mechanism underlying Notch-1-mediated anti-apoptotic function in T cells using model cell lines as the experimental system. Ectopic expression of the intracellular domain of Notch-1/activated Notch (AcN1) increases expression of anti-apoptotic proteins of the inhibitors of apoptosis (IAP) family, the Bcl-2 family, and the FLICE-like inhibitor protein (FLIP) and inhibits death triggered by multiple stimuli that activate intrinsic or extrinsic pathways of apoptosis in human and murine T cell lines. Numb inhibited the AcN1-dependent induction of anti-apoptotic proteins and anti-apoptotic function. Using pharmacological inhibitors and dominant-negative approaches, we describe a functional role for phosphatidylinositol 3-kinase (PI3K)-dependent activation of the serine-threonine kinase Akt/PKB in the regulation of AcN1-mediated anti-apoptotic function and the expression of FLIP and IAP family proteins. Using a cell line deficient for the T cell-specific, Src family protein, the tyrosine kinase p56(lck) and by reconstitution approaches we demonstrate that p56(lck) is required for the Notch-1-mediated activation of Akt/PKB function. Furthermore, the Src tyrosine kinase inhibitor, PP2, abrogated ectopically expressed AcN1-mediated anti-apoptotic function and phosphorylation of p56(lck). We present evidence that endogenous Notch-1 associates with p56(lck) and PI3K but that Akt/PKB does not co-immunoprecipitate with the Notch1.p56(lck).PI3K complex. Finally, we demonstrate that the Notch1.p56(lck).PI3K complex is present in primary T cells that have been activated in vitro and sustained in culture with the cytokine interleukin-2.  相似文献   

14.
Lung cancer is the leading cause of death among all cancers. Non-small cell lung cancer accounts for 80% of lung cancer with a 5-year survival rate of 16%. Notch pathway, especially Notch-1 is up-regulated in a subgroup of non-small cell lung cancer patients. Since Notch-1 signaling plays an important role in cell proliferation, differentiation, and apoptosis, down-regulation of Notch-1 may exert anti-tumor effects. The objective of this study was to investigate whether delta-tocotrienol, a naturally occurring isoform of Vitamin E, inhibits non-small cell lung cancer cell growth via Notch signaling. Treatment with delta-tocotrienol resulted in a dose and time dependent inhibition of cell growth, cell migration, tumor cell invasiveness, and induction of apoptosis. Real-time RT-PCR and western blot analysis showed that antitumor activity by delta-tocotrienol was associated with a decrease in Notch-1, Hes-1, Survivin, MMP-9, VEGF, and Bcl-XL expression. In addition, there was a decrease in NF-κB-DNA binding activity. These results suggest that down-regulation of Notch-1, via inhibition of NF-κB signaling pathways by delta-tocotrienol, could provide a potential novel approach for prevention of tumor progression in non-small cell lung cancer.  相似文献   

15.
16.
目的:观察6-姜烯酚对溃疡性结肠炎小鼠结肠上皮细胞Notch信号通路的调控作用。方法:清洁级昆明小鼠40只随机分为正常组(10只)和造模组(30只),造模组采用2%葡聚糖硫酸钠(DSS)自由饮用诱导溃疡性结肠炎模型,造模15 d后分为模型组,6-姜烯酚组,阳性对照组,每组10只。正常组、模型组灌胃生理盐水,6-姜烯酚组采用6-姜烯酚100 mg/(kg·d)灌胃,阳性对照组采用柳氮磺吡啶100 mg/(kg·d)灌胃,给药20 d后处死,观察小鼠结肠病理组织学改变,免疫荧光双标法检测结肠上皮细胞Hes-1、Math-1蛋白的表达,RT-PCR法检测结肠上皮组织Notch-1、Hes-1、Math-1 mRNA的表达,Western blot法检测结肠上皮组织Notch-1、Hes-1、Math-1蛋白的表达。结果:与正常组相比,模型组小鼠结肠上皮组织Notch-1、Hes-1蛋白和mRNA相对表达量显著升高( P<0.01), Math-1蛋白和mRNA相对表达量显著降低( P<0.01);与模型组比较,6-姜烯酚组、柳氮磺吡啶组小鼠结肠上皮组织Notch-1、Hes-1蛋白和mRNA相对表达量显著降低( P<0.01), Math-1蛋白和mRNA相对表达量显著升高( P<0.01) 。结论:6-姜烯酚能够抑制Notch通路的过度活化,调节结肠上皮吸收细胞系和分泌细胞系之间分化的平衡,修复受损结肠粘膜组织。  相似文献   

17.
18.
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号