共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex of Ku with DNA is demonstrated to have multiple forms as assayed by gel retardation analysis. In CV1 cells this variation of complex can be modulated in response to viral infection with SV40. By Western blot analysis, a correlation can be made between modification of the complex formed on DNA in response to viral infection with variation of the 85 kDa subunit of Ku. Modification of the 85 kDa subunit can also be seen when cells are exposed to various extracellular stimuli including variation in serum levels, PMA and CaPO4. 相似文献
2.
We used a genetic approach to characterize features of mitogen-activated protein kinase (MAPK) activation occurring as a consequence of expression of distinct erbB receptor combinations in transformed human cells. Kinase-deficient erbB proteins reduced epidermal growth factor (EGF)-induced tyrosine phosphorylation of endogenous Shc proteins and also reduced immediate and sustained EGF-induced ERK MAPK activities in human glioblastoma cells, although basal ERK MAPK activities were unaffected. Basal and EGF-induced JNK and p38 MAPK kinase activities were equivalent in parental cancer cells and EGFR-inhibited subclones. When ectopically overexpressed in murine fibroblasts and human glioblastoma cells, a constitutively activated human EGF receptor oncoprotein (deltaEGFR) induced EGF-independent elevation of basal ERK MAPK activity. Basal JNK MAPK kinase activity was also specifically induced by deltaEGFR, which correlated with increased phosphorylation of a 54-kDa JNK2 protein observed in deltaEGFR-containing cells. The JNK activities in response to DNA damage were comparably increased in cells containing wildtype EGFR or deltaEGFR. Consistent with the notion that transforming erbB complexes induce sustained and unregulated MAPK activities, coexpression of p185(neu) and EGFR proteins to levels sufficient to transform murine fibroblasts also resulted in prolonged EGF-induced ERK in vitro kinase activation. Transforming erbB complexes, including EGFR homodimers, deltaEGFR homodimers, and p185(neu)/EGFR heterodimers, appear to induce sustained, unattenuated activation of MAPK activities that may contribute to increased transformation and resistance to apoptosis in primary human glioblastoma cells. 相似文献
3.
Barry D. Shur 《Molecular and cellular biochemistry》1984,61(2):143-158
Summary The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate. 相似文献
4.
5.
Zhang J Xue F Whiteaker P Li C Wu W Shen B Huang Y Lukas RJ Chang Y 《The Journal of biological chemistry》2011,286(28):25331-25340
Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR. 相似文献
6.
Tadashi Yamamoto Tsutomu Nishida Nobuyuki Miyajima Sadaaki Kawai Tatsuo Ooi Kumao Toyoshima 《Cell》1983,35(1):71-78
The erbB gene of an avian erythroblastosis virus, AEV-H, was determined to be 1812 nucleotides long and was predicted to code for a protein of 67,638 daltons. Unexpectedly, a sequence of 285 amino acids in the middle of the protein showed a significant homology (38%) with the sequence in the carboxy terminus of p60src. The nucleotide sequence of a mutant of AEV-H, td-130, which induces sarcomas but not erythroblastosis in chicken, was also analyzed. A deletion of 169 nucleotides was identified in the 3′ half of the erbB gene, indicating that the gene codes for a truncated protein with the predicted molecular weight of 46,667. These findings suggest that the homologous domain of erbB protein with its N-terminal portion is sufficient for the transformation of fibroblasts and that one-third of the carboxy-terminal domain has a key role for the transformation of erythroid cells. 相似文献
7.
UVB-induced apoptosis in normal human keratinocytes: role of the erbB receptor family 总被引:4,自引:0,他引:4
Exposure of human keratinocytes to ultraviolet B (UVB) light leads to the activation of a variety of cell-surface receptors; however, the biologic consequences of these activated receptors are still unclear. It was previously reported that inhibition of cellular tyrosine kinase activity suppressed UVB-dependent effects in human skin. We confirmed that the same suppression of UVB-induced apoptosis occurs in normal human keratinocytes grown in culture. Furthermore, we sought to determine the role of erbB receptor tyrosine kinases in human keratinocytes following UVB irradiation. Using a specific inhibitor of the erbB family of tyrosine kinase receptors, DAPH, we investigated the effects of UVB-dependent activation of these receptors on keratinocyte biology. The addition of DAPH to keratinocytes resulted in the concentration-dependent protection of UVB-induced apoptosis. The protection from apoptosis was not due to the induction of keratinocyte differentiation, the loss of keratinocyte viability, or inhibition of the proliferative potential of keratinocytes by DAPH. The effect of DAPH on apoptosis was specific for UVB as it had no effect on bleomycin-induced apoptosis. Furthermore, the inhibition of UVB-induced apoptosis could also be observed using neutralizing antibodies to either erbB1 or erbB2. Finally, we demonstrated that DAPH could also inhibit UVB-induced apoptosis in an epidermal organotypic model system. These studies suggest an important role for the erbB receptors in UVB-induced apoptosis of human keratinocytes. 相似文献
8.
The activity of the DNA-dependent protein kinase (DNA-PK) complex is determinant in the cellular response to nitrogen mustards 总被引:1,自引:0,他引:1
The DNA-dependent protein kinase plays a critical role in mammalian DNA double strand break (DSB) repair and in specialized recombination, such as lymphoid V(D)J recombination. Its regulatory subunit Ku (dimer of the Ku70 and Ku80 protein) binds to DNA and recruits the kinase catalytic sub-unit, DNA-PKcs. We show here that three different strains deficient in either the Ku80 (xrs-6) or DNA-PKcs (V-3, scid) component of DNA-PK are markedly sensitive (3.5- to 5-fold) to a group of DNA cross-linking agents, the nitrogen mustards (NMs) (melphalan and mechlorethamine) as compared to their parental cell line. Importantly, the level of hypersensitivity to these drugs was close to the level of hypersensitivity observed for radiomimetic agents that create DSBs in DNA (bleomycin and neocarzinostatin). In addition, sensitivity to NMs was restored to the parental level in the xrs-6 cell line stably transfected with the human Ku80 gene (xrs-6/Ku80), showing unequivocally that DNA-PK is involved in this phenotype. These results indicate that a function of the whole DNA-PK protein complex is involved in the cellular response to NMs and suggest that the repair of DNA interstrand cross-links induced in DNA by NMs involved a DNA-PK dependent pathway that shares common features with DNA DSBs repair. 相似文献
9.
Singh P Doshi S Spaethling JM Hockenberry AJ Patel TP Geddes-Klein DM Lynch DR Meaney DF 《The Journal of biological chemistry》2012,287(6):4348-4359
N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity. 相似文献
10.
Mixed lineage kinase-dependent JNK activation is governed by interactions of scaffold protein JIP with MAPK module components. 总被引:4,自引:0,他引:4
下载免费PDF全文

It has been proposed that JNK-interacting proteins (JIP) facilitate mixed lineage kinase-dependent signal transduction to JNK by aggregating the three components of a JNK module. A new model for the assembly and regulation of these modules is proposed based on several observations. First, artificially induced dimerization of dual leucine zipper-bearing kinase (DLK) confirmed that DLK dimerization is sufficient to induce DLK activation. Secondly, under basal conditions, DLK associated with JIP is held in a monomeric, unphosphorylated and catalytically inactive state. Thirdly, JNK recruitment to JIP coincided with significantly decreased affinity of JIP and DLK. JNK promoted the dimerization, phosphorylation and activation of JIP-associated DLK. Similarly, treatment of cells with okadaic acid inhibited DLK association with JIP and resulted in DLK dimerization in the presence of JIP. In summary, JIP maintains DLK in a monomeric, unphosphorylated, inactive state. Upon stimulation, JNK-JIP binding affinity increases while JIP-DLK interaction affinity is attenuated. Dissociation of DLK from JIP results in subsequent DLK dimerization, autophosphorylation and module activation. Evidence is provided that this model holds for other MLK-dependent JNK modules. 相似文献
11.
Nair KS Hanson SM Mendez A Gurevich EV Kennedy MJ Shestopalov VI Vishnivetskiy SA Chen J Hurley JB Gurevich VV Slepak VZ 《Neuron》2005,46(4):555-567
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion. 相似文献
12.
Using membrane preparations of the interferon receptor, prepared from cells of the Burkitt line, Daudi, we have examined the binding of three human recombinant alpha-interferons. 1. We discovered a binding titration of the interferons IFN-alpha A and IFN-alpha D in the pH range 6-9. Receptor binding, negligible at pH 6, rises to a maximum close to pH 9. We have shown that binding of IFN-alpha A at basic pH is to the same receptors as at neutrality and that IFN-receptor complexes extracted with digitonin are more stable at basic pH than they are at neutrality. 2. The recombinant interferon, IFN-alpha B, shows little change of binding in the pH range 6-9. At its basic optimum the binding of IFN-alpha A approaches that of IFN-alpha B, while at neutral pH the binding of IFN-alpha A is 3-4 times less. This difference at neutral pH is seen on intact cells as well as on membrane preparations. The specific activity of IFN-alpha B is close to that of IFN-alpha A, both of which are 10-20 times more active than IFN-alpha D; and the binding titration is, therefore, independent of the initial binding affinities. 3. Using hybrid IFNs constructed from the DNA sequences of alpha D and alpha B, we have isolated the sequence responsible for the binding titration to the segment comprising amino acids 61-92. Examination of these sequences reveals that Lys-84 is present in all the IFN-alpha except IFN-alpha B where it is replaced by Glu; and Tyr-90, present in most of the common IFN-alpha including alpha A and alpha D, is replaced by Asp in IFN-alpha B. Lys and Tyr would normally titrate in the pH range 6-9. We conclude that the binding titration is due to an electrostatic interaction and we propose that the interaction is between IFN-receptor complexes. The role of the interaction in the binding losses that accompany the antiproliferative effects of IFN is discussed. 相似文献
13.
Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex 总被引:1,自引:0,他引:1
下载免费PDF全文

Béland M Pilon N Houle M Oh K Sylvestre JR Prinos P Lohnes D 《Molecular and cellular biology》2004,24(11):5028-5038
The Cdx1 gene product is essential for normal anterior-posterior vertebral patterning. Expression of Cdx1 is regulated by several pathways implicated in anterior-posterior patterning events, including retinoid and Wnt signaling. We have previously shown that retinoic acid plays a key role in early stages of Cdx1 expression at embryonic day 7.5 (E7.5), while both Wnt3a signaling and an autoregulatory loop, dependent on Cdx1 itself, are involved in later stages of expression (E8.5 to E9.5). This autoregulation is reflected by the ability of Cdx1 to affect expression from proximal Cdx1 promoter sequences in tissue culture. However, this region is devoid of a demonstrable Cdx response element(s). We have now found that Cdx1 and LEF1, a nuclear effector of Wnt signaling, synergize to induce expression from the Cdx1 promoter through previously documented LEF/T-cell factor response elements. We also found a direct physical interaction between the homeodomain of Cdx1 and the B box of LEF1, suggesting a basis for this synergy. Consistent with these observations, analysis of Cdx1 Wnt3a(vt) compound mutants demonstrated that Wnt and Cdx1 converged on Cdx1 expression and vertebral patterning in vivo. Further data suggest that Cdx-high-mobility group box interactions might be involved in a number of additional pathways. 相似文献
14.
Chiara Francavilla Paola Cattaneo Vladimir Berezin Elisabeth Bock Diletta Ami Ario de Marco Gerhard Christofori Ugo Cavallaro 《The Journal of cell biology》2009,187(7):1101-1116
Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation. 相似文献
15.
The beta-amyloid precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, but its normal functions in the brain are poorly understood. A number of APP-interacting proteins have been identified: intracellularly, APP interacts with adaptor proteins through its conserved NPXY domain; extracellularly, APP interacts with a component of the extracellular matrix, F-spondin. Interestingly, many of these APP-interacting proteins also interact with the family of receptors for apolipoprotein E (apoE), the Alzheimer's disease risk factor. apoE receptors also share with APP the fact that they are cleaved by the same secretase activities. apoE receptors are shed from the cell surface, a cleavage that is regulated by receptor-ligand interactions, and C-terminal fragments of apoE receptors are cleaved by gamma-secretase. Functionally, both APP and apoE receptors affect neuronal migration and synapse formation in the brain. This review summarizes these numerous interactions between APP and apoE receptors, which provide clues about the normal functions of APP. 相似文献
16.
17.
The equilibrium distributions of hairpin ribozyme conformational isomers have been examined by time-resolved fluorescence resonance energy transfer. Ribozymes partition between active (docked) and inactive (extended) conformers, characterized by unique interdomain distance distributions, which define differences in folding free energy. The active tertiary structure is stabilized both by specific interactions between the catalytic and the substrate-binding domains and by the structure of the intervening helical junction. Under physiological conditions, the docking equilibrium of the natural four-way junction dramatically favors the active conformer, while those of a three-way and the two-way junction used in gene therapy applications favor the inactive conformer. 相似文献
18.
Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex
下载免费PDF全文

Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases. 相似文献
19.
The mannose 6-phosphate receptor cytoplasmic domain is not sufficient to alter the cellular distribution of a chimeric EGF receptor. 总被引:4,自引:0,他引:4
下载免费PDF全文

Unlike most receptors, 300 kd mannose 6-phosphate receptors (MPRs) are localized primarily in the trans-Golgi network (TGN) and endosomes, and they cycle constitutively between these compartments. Yet, when present at the cell surface, MPRs are internalized together with other cell surface receptors in clathrin-coated vesicles. We constructed a chimeric receptor, comprised of human EGF receptor extracellular and transmembrane domains joined to the bovine MPR cytoplasmic domain, to test whether the MPR cytoplasmic domain contained sufficient information to direct a cell surface receptor into both of these transport pathways. The expressed protein was stable, bound EGF with high affinity, and was efficiently endocytosed and recycled back to the cell surface, in the presence or absence of EGF. If the cytoplasmic domain alone is responsible for sorting native MPRs, chimeric receptors might have been expected to be located primarily in the TGN and in endosomes at steady state. Surprisingly, under conditions in which essentially all endogenous MPRs were intracellular, greater than 85% of the chimeric receptors were located at the cell surface. These experiments demonstrate that the MPR cytoplasmic domain is not sufficient to alter the distribution of the EGF receptor, and suggest a role for extracellular and transmembrane domains in MPR routing. 相似文献
20.
D S Schmid 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(10):3610-3616
The nature of the in vitro human cytotoxic T-cell responder population to HSV type 1 (HSV-1) was studied. In 5-day HSV-1-stimulated cultures that contained MHC-restricted activity, two phenotypically distinct populations of cells were present that were capable of lysing HSV-1-infected B cell lines in a 5-h 51Cr-release assay. The first was CD4+, CD8-, CD16- cell typical of class II-restricted T cells, whereas the other population bore a CD4-, CD8-, CD16+ NK-cell phenotype. Elimination of the NK cell fraction from bulk cultures by using anti-CD16 plus C frequently resulted in cell populations that killed in an Ag-specific, HLA-DR-restricted fashion. In some cases the anti-CD16-pretreated cultures retained a killing population that was unrestricted to MHC products. In no instance were any cytotoxic T cells that were restricted to class I Ag in evidence. Limiting dilution analysis of precursor frequency indicated that about 1 in 4000 to 1 in 8000 cells from peripheral blood are specific for HSV-1 in seropositive individuals. Comparisons of HLA class I-matched and HLA class II-matched targets with the autologous target by using limiting dilution analysis yielded results entirely consistent with those obtained in the bulk culture assay system. 相似文献