首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule-associated protein tau was purified from bovine brain microtubules by either (1) phosphocellulose chromatography, (2) heat treatment at pH 6.4, (3) heat treatment at pH 2.7, (4) heat treatment at pH 2.7 followed by extraction with perchloric acid and precipitation with glycerol, or (5) by precipitation with ammonium sulfate followed by extraction with perchloric acid. All of these tau preparations reacted specifically with antibodies to Alzheimer paired helical filaments. Affinity purified antibodies to tau labeled both Alzheimer neurofibrillary tangles and plaque neurites but not amyloid in Alzheimer brain tissue sections and labeled paired helical filament polypeptides on Western blots. Human brain tau and paired helical filament polypeptides co-migrated on sodium dodecyl sulfate-polyacrylamide gels. These results suggest that tau is a major component of Alzheimer paired helical filaments.  相似文献   

2.
The aggregation of the microtubule-associated tau protein and formation of "neurofibrillary tangles" is one of the hallmarks of Alzheimer disease. The mechanisms underlying the structural transition of innocuous, natively unfolded tau to neurotoxic forms and the detailed mechanisms of binding to microtubules are largely unknown. Here we report the high-resolution characterization of the repeat domain of soluble tau using multidimensional NMR spectroscopy. NMR secondary chemical shifts detect residual beta-structure for 8-10 residues at the beginning of repeats R2-R4. These regions correspond to sequence motifs known to form the core of the cross-beta-structure of tau-paired helical filaments. Chemical shift perturbation studies show that polyanions, which promote paired helical filament aggregation, as well as microtubules interact with tau through positive charges near the ends of the repeats and through the beta-forming motifs at the beginning of repeats 2 and 3. The high degree of similarity between the binding of polyanions and microtubules supports the hypothesis that stable microtubules prevent paired helical filament formation by blocking the tau-polyanion interaction sites, which are crucial for paired helical filament formation.  相似文献   

3.
Tau protein, a neuronal microtubule-associated protein, forms insoluble fibers ("paired helical filaments") in Alzheimer's disease and other tauopathies. Conflicting views on the structure of the fibers have been proposed recently, ranging from mainly alpha-helical structure to mainly beta-sheet, or a mixture of mostly random coil and beta-sheet. We have addressed this issue by studying tau fibers immunopurified from Alzheimer brain tissue by a conformation-specific antibody and comparing them with fibers reassembled from recombinant tau or tau constructs in vitro, using a combination of electron microscopy and spectroscopic methods. Brain-derived fibers and reassembled fibers both exhibit a typical twisted appearance when examined by electron microscopy. The soluble tau protein is a natively unfolded protein dominated by random coil structure, whereas Alzheimer PHFs and reassembled fibers show a shift toward an increase in the level of beta-structure. The results support a model in which the repeat domain of tau (which lies within the core of PHFs) adopts an increasing level of beta-structure during aggregation, whereas the N- and C-terminal domains projecting away from the PHF core are mostly random coil.  相似文献   

4.
Tau, a microtubule-associated phosphoprotein, was identified as a definite component of paired helical filaments which progressively accumulate in Alzheimer's disease brain. To learn more about tau in the aged brain, we have isolated and sequenced a cDNA clone encoding tau from a cDNA library of an aged human brain. The cloned cDNA sequence included a new insert of 93 nucleotides, which added a fourth repeat to the three-repeat type of tau already reported. Perhaps, this four-repeat type of tau is predominant in normal aged brain. In contrast, the sequence analysis of paired helical filaments showed that the integrated tau is of three-repeat type. This indicates that a distinct form of tau is selectively incorporated into paired helical filaments.  相似文献   

5.
Eliezer D  Barré P  Kobaslija M  Chan D  Li X  Heend L 《Biochemistry》2005,44(3):1026-1036
The microtubule-associated protein tau is found aggregated into paired helical filaments in the intraneuronal neurofibrillary tangle deposits of victims of Alzheimer's disease (AD) and other related dementias. Tau contains a repeat domain consisting of three or four 31-32-residue imperfect repeats that forms the core of tau filaments and is capable of self-assembling into filaments in vitro. We have used high-resolution NMR spectroscopy to characterize the structural properties of the three-repeat domain of tau at the level of individual residues. We find that three distinct regions of the polypeptide corresponding to previously mapped microtubule interaction sites exhibit a preference for helical conformations, suggesting that these sites adopt a helical structure when bound to microtubules. In addition, we directly observe a marked preference for extended or beta-strand-like conformations in a stretch of residues between two of the helical regions, which corresponds closely to a region previously implicated as an early site of beta-strand structure formation and intermolecular interactions leading to paired helical filament (PHF) formation. This observation supports the idea that this region of the protein plays a crucial role in the formation of tau aggregates. We further show that disulfide-bond-mediated dimer formation does not affect and is not responsible for the observed structural preferences of the protein. Our results provide the first high-resolution view of the structural properties of the protein tau, are consistent with an important role for beta structure in PHF formation, and may also help explain recent reports that tau filaments contain helical structure.  相似文献   

6.
Tau filaments are the pathological hallmark of numerous neurodegenerative diseases including Alzheimer disease, Pick disease, and progressive supranuclear palsy. In the adult human brain, six isoforms are expressed that differ by the presence or absence of the second of four semiconserved repeats. As a consequence, half of the tau isoforms have three repeats (3R tau), whereas the other half of the isoforms have four repeats (4R tau). Tauopathies can be characterized based on the isoform composition of their filaments. Alzheimer disease filamentous inclusions contain all isoforms. Pick disease filaments contain 3R tau. Progressive supranuclear palsy filaments contain 4R tau. Here, we used site-directed spin labeling of recombinant tau in conjunction with electron paramagnetic resonance spectroscopy to obtain structural insights into these filaments. We find that filaments of 4R tau and 3R tau share a highly ordered core structure in the third repeat with parallel, in-register arrangement of β-strands. This structure is conserved regardless of whether full-length isoforms (htau40 and htau23) or truncated constructs (K18 and K19) are used. When mixed, 3R tau and 4R tau coassemble into heterogeneous filaments. These filaments share the highly ordered core in the third repeat; however, they differ in their overall composition. Our findings indicate that at least three distinct types of filaments exist: homogeneous 3R tau, homogeneous 4R tau, and heterogeneous 3R/4R tau. These results suggest that individual filaments found in Alzheimer disease are structurally distinct from those in the 3R and 4R tauopathies.  相似文献   

7.
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.  相似文献   

8.
In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.  相似文献   

9.
The protein tau is found in an aggregated filamentous state in the intraneuronal paired helical filament deposits characteristic of Alzheimer's disease and other related dementias and mutations in tau protein and mRNA cause frontotemproal dementia. Tau isoforms include a microtubule‐binding domain containing either three or four imperfect tandem microtubule binding repeats that also form the core of tau filaments and contain hexapaptide motifs that are critical for tau aggregation. The tau microtubule‐binding domain can also engage in direct interactions with detergents, fatty acids, or membranes, which can greatly facilitate tau aggregation and may also mediate some tau functions. Here, we show that the alternatively spliced second microtubule‐binding repeat exhibits significantly different structural characteristics compared with the other three repeats in the context of the intact repeat domain. Most notably, the PHF6* hexapeptide motif located at the N‐terminus of repeat 2 has a lower propensity to form strand‐like structure than the corresponding PHF6 motif in repeat 3, and unlike PHF6 converts to partially helical structure in the micelle‐bound state. Interestingly, the behavior of the Module‐B motif, located at the beginning of repeat 4, resembles that of PHF6* rather than PHF6. Our observations, combined with previous results showing that PHF6* and Module‐B are both less effective than PHF6 in nucleating tau aggregation, suggest a hierarchy in the efficacy of these motifs in nucleating tau aggregation that originates in differences in their intrinsic propensities for extended strand‐like structure and the resistance of these propensities to changes in tau's environment.  相似文献   

10.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.  相似文献   

11.
The tau protein belongs to the category of intrinsically disordered proteins, which in their native state do not have an average stable structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilising the microtubules in the axons of the neurons. On the other hand, the same tau is involved in the development of Alzheimer disease, when it aggregates in paired helical filaments forming fibrils, which form insoluble tangles. The beginning of the pathological aggregation of tau has been attributed to a local transition of protein portions from random coil to a β-sheet. These structures would very likely be transient; therefore, we performed a molecular dynamics simulation of tau to gather information on the existence of segments of tau endowed with a secondary structure. We combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics a set of most probable conformations of tau. The analysis of these conformations highlights the presence of transient secondary structures such as turns, β-bridges, β-sheets and α-helices. It also shows that a large segment of the N-terminal region is found near the repeats domain in a globular-like shape.  相似文献   

12.
R Jakes  M Novak  M Davison    C M Wischik 《The EMBO journal》1991,10(10):2725-2729
The microtubule associated protein tau is incorporated into the pronase resistant core of the paired helical filament (PHF) in such a way that the repeat region is protected from proteases, but can be released as a major 12 kDa species from the PHF core by formic acid treatment and by boiling in SDS. This fragment retains the ability to aggregate in the presence of SDS. Detailed sequence analysis of the 12 kDa species shows that it consists of a mixture of peptides derived from the repeat region of 3- and 4-repeat tau isoforms comigrating as a single electrophoretic band. However, the 4-repeat isoforms released from the core lack either the first or the last repeat. The pronase-protected region of tau within the PHF core is therefore restricted to three repeats, regardless of isoform. The alignment of cleavage sites at homologous positions within tandem repeats after protease treatment indicates that the tau-core association is precisely constrained by the tandem repeat structure of the tau molecule.  相似文献   

13.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

14.
Developmentally regulated expression of specific tau sequences   总被引:48,自引:0,他引:48  
K S Kosik  L D Orecchio  S Bakalis  R L Neve 《Neuron》1989,2(4):1389-1397
Tau protein undergoes a shift in its molecular mass and its electrophoretic complexity during early postnatal development. We have sequenced a tau cDNA from an adult rat brain expression library and have found two inserted sequences. One of these inserts predicts a fourth repeated sequence homologous to the other three in the carboxyl end of tau that have the property of microtubule binding. Oligonucleotide probes directed against the insert hybridized only to tau mRNA at postnatal time points, even though tau is first expressed as early as embryonic day 13. A probe directed against the junction revealed expression of non-insert-containing tau mRNA from embryonic day 14 until postnatal day 8, after which time there was an abrupt decline in the expression of this immature form. Comparison of the developmentally expressed tau sequences with those sequences obtained directly from Alzheimer paired helical filaments revealed the presence of both the mature and the immature tau mRNA sequences.  相似文献   

15.
在阿尔茨海默病(A1zheimer’s disease,AD)中微管相关蛋白tau能够产生许多异常翻译后修饰并聚集形成配对螺旋丝(paired helical filament,PHF)。这些tau的修饰包括过磷酸化、异常糖基化、截断等,其中,过磷酸化和异常糖基化是阿尔茨海默氏病等神经退行性疾病神经元纤维化的主要分子发病机制。  相似文献   

16.
Neurofibrillary tangles (NFTs) are pathological hallmarks of several neurodegenerative disorders, including Alzheimer's disease (AD). NFTs are composed of microtubule-binding protein tau, which assembles to form paired helical filaments (PHFs) and straight filaments. Here we show by atomic force microscopy that AD brain tissue and in vitro tau form granular and fibrillar tau aggregates. CD spectral analysis and immunostaining with conformation-dependent antibodies indicated that tau may undergo conformational changes during fibril formation. Enriched granules generated filaments, suggesting that granular tau aggregates may be an intermediate form of tau fibrils. The amount of granular tau aggregates was elevated in prefrontal cortex of Braak stage I cases compared to that of Braak stage 0 cases, suggesting that granular tau aggregation precedes PHF formation. Thus, granular tau aggregates may be a relevant marker for the early diagnosis of tauopathy. Reducing the level of these aggregates may be a promising therapy for tauopathies and for promoting healthy brain aging.  相似文献   

17.
阿尔次海默病易溶型胞浆tau和难溶型双螺旋丝中的tau均被异常磷酸化和异常糖基化修饰.异常修饰的tau丧失其促微管组装活性,用不同蛋白磷酸酯酶对难溶型双螺旋丝中的tau去磷酸化处理后可不同程度恢复其促微管组装生物学活性.单纯去糖基化处理只在很小限度恢复tau的功能,但去糖基化预处理可增强去磷酸化对tau上述活性的恢复.提示:a.tau的异常磷酸化是导致其功能活性丧失的直接因素,而糖基化修饰可能通过对其结构的影响而间接对tau功能活性发挥作用;b.蛋白磷酸酯酶可部分抑制和逆转阿尔次海默病的脑病理损伤.  相似文献   

18.
We have isolated cDNA clones encoding a 383-amino acid isoform of the human microtubule-associated protein tau. It differs from previously determined tau sequences by the presence of an additional repeat of 31 amino acids, giving four, rather than three, tandem repeats in its carboxy-terminal half. The extra repeat is encoded by a separate exon. Probes derived from cDNA clones encoding the three (type I) and four repeat (type II) tau protein isoforms detected mRNAs for both forms in all adult human brain areas examined. However, in foetal brain only type I mRNA was found. Type I and type II mRNAs were present in pyramidal cells in cerebral cortex. In the hippocampal formation, type I mRNA was found in pyramidal and granule cells; type II mRNA was detected in most, though not all, pyramidal cells but not in granule cells. These observations indicate that tau protein mRNAs are expressed in a stage- and cell-specific manner. Tau protein is found in the protease-resistant core of the paired helical filament, the major constituent of the neurofibrillary tangle in Alzheimer's disease. Taken in conjunction with previous findings, the present results indicate that both the three and four repeat-containing tau protein isoforms are present in the core of the paired helical filament.  相似文献   

19.
Pathological hyperphosphorylated tau is the principal component of paired helical filaments, a pathological hallmark of Alzheimer disease (AD) and a strong candidate for a neurotoxic role in AD and other neurodegenerative disorders. Here we show that heat shock protein 27 (Hsp27) preferentially binds pathological hyperphosphorylated tau and paired helical filaments tau directly but not non-phosphorylated tau. The formation of this complex altered the conformation of pathological hyperphosphorylated tau and reduced its concentration by facilitating its degradation and dephosphorylation. Moreover, Hsp27 rescues pathological hyperphosphorylated tau-mediated cell death. Therefore, Hsp27 is likely to provide a neuroprotective effect in AD and other tauopathies.  相似文献   

20.
Glycogen synthase kinase-3beta (GSK-3beta) has been described as a proline-directed kinase which phosphorylates tau protein at several sites that are elevated in Alzheimer paired helical filaments. However, it has been claimed that GSK-3beta can also phosphorylate the non-proline-directed KXGS motifs in the presence of heparin, including Ser262 in the repeat domain of tau, which could induce the detachment of tau from microtubules. We have analyzed the activity of recombinant GSK-3beta and of GSK-3beta preparations purified from tissue, using two-dimensional phosphopeptide mapping, immunoblotting with phosphorylation-sensitive antibodies, and phosphopeptide sequencing. The most prominent phosphorylation sites on tau are Ser396 and Ser404 (PHF-1 epitope), Ser46 and Thr50 in the first insert, followed by a less efficient phosphorylation of other Alzheimer phosphoepitopes (antibodies AT-8, AT-270, etc). We also show that the non-proline-directed activity at KXGS motifs is not due to GSK-3beta itself, but to kinase contaminations in common GSK-3beta preparations from tissues which are activated upon addition of heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号