首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium is present in plasma and tissues in specific and non-specific forms. The experiments reported here were carried out to clarify some factors that affect these forms of the element in plasma. A selenium-replete human subject was given 400 microg of selenium daily for 28 days as selenomethionine and, in a separate experiment, as selenate. The selenomethionine raised plasma and albumin selenium concentrations. Selenate did neither. The molar ratio of methionine to selenium in albumin was approximately 8000 under basal and selenate-supplemented conditions but 2800 after selenomethionine supplementation. This demonstrates that selenium from selenomethionine, but not selenium from selenate, can be incorporated into albumin, presumably as selenomethionine in the methionine pool. Selenocysteine incorporation into albumin was studied in rats using (75)Se-selenocysteine. No evidence was obtained for incorporation of (75)Se into albumin after exogenous administration or endogenous synthesis of (75)Se-selenocysteine. Thus, selenocysteine does not appear to be incorporated non-specifically into proteins as is selenomethionine. These findings are in support of selenomethionine being a non-specific form of selenium that is metabolized as a constituent of the methionine pool and is unaffected by specific selenium metabolic processes. No evidence was found for non-specific incorporation of selenium into plasma proteins when it was administered as selenate or as selenocysteine. These forms of the element appear to be metabolized by specific selenium metabolic processes.  相似文献   

2.
微生物硒代谢机制研究进展   总被引:9,自引:0,他引:9  
硒(Se)是人与动物生命必需的微量元素,在医学保健和工业制造方面有着广泛的应用。硒在环境中有四种价态,包括硒酸盐Se O42-(+6)、亚硒酸盐Se O32-(+4)、单质硒Se0(0)和硒化物Se2-(-2)。微生物在硒的形态转化中扮演了重要的角色,影响着环境中硒的生物地球化学循环。本文主要从自然界中硒的循环以及微生物与硒代谢机制两个方面阐述微生物对硒的生物地球化学循环的重要性。  相似文献   

3.
4.
Selenium (Se) is an essential micronutrient for vertebrates though little is known about the effects on insects. Herbivorous insect larvae acquire Se from plant tissues in the inorganic form of sodium selenate and sodium selenite, and in the organic form of selenoamino acids, selenomethionine, and selenocystine. In this study, we document the effects of dietary supplementation with sodium selenite, sodium selenate, selenocystine, selenomethionine, and selenized yeast on the developmental rate of Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Larvae tolerated high levels of Se (500 µg g?1 Se) as sodium selenate and to a lesser extent as selenocystine. Lower levels of sodium selenite (>1 µg g?1 Se) caused increased mortality, reduced rates of pupation, more pupal/adult intermediates, and reduced adult emergence. Selenomethionine proved toxic to larvae at levels above 25 µg g?1 Se, significantly delaying pupation and raising mortality. Provision of Se as selenized yeast, which contains primarily selenomethionine, was also extremely detrimental to larval development and survival. The results indicate that the impact of dietary Se supplement for insects may differ from vertebrates.  相似文献   

5.
《Small Ruminant Research》2010,90(2-3):185-192
Selenium (Se) is an essential trace element in animal nutrition, and exerts multiple actions related to animal production, fertility and disease prevention. Glutathione peroxidase (GSH-PX) enzyme was the first proven selenoenzyme that can prevent oxidative damage of the cellular membrane. Actually more than 30 selenoenzymes have been described and a hierarchy process for expression in the animal has been established. White muscle disease (WMD) was the first recognized condition associated with Se deficiency. WMD causes new born mortality, especially in ruminants, and impaired production condition in growing and adult animals. Selenium is critical to thyroid hormone synthesis and it is also very important for converting T4 (thyroxin inactive form) to T3 (active form). A good immune response requires Se too. Selenium status in soil, plants and animal blood and tissue can be used in the diagnosis of Se deficiency. Diverse forms of Se supplements are available, but many factors affect their activity and efficacy, such as its chemical form and animal's health and production condition. The relationships between foetus Se metabolism and pregnant dam Se status are critical for productivity and need further research.  相似文献   

6.
7.
BackgroundSelenium is a trace element traditionally ingested either in its organic form via food or in its inorganic form through nutritional supplements, while selenium formulated as nanoparticles is a putative long-acting alternative. To understand the physiology and toxicology of the different selenium formulations, it is important to determine how their selenium content is absorbed, distributed, metabolised and excreted; therefore, we reviewed their biokinetics following oral exposure.MethodsWe retrieved and reviewed the literature on the absorption, distribution, metabolism, and excretion of oral exposure to different forms of selenium.ResultsSelenium in both the organic form (containing carbon to selenium chemical bonds) and the inorganic form is absorbed into the blood in humans. The mean normal blood level of many studies was 139 μg/L. There are indications that selenium from organic sources is more bioavailable than selenium from inorganic sources. Selenium is distributed throughout the body, including in breast milk. The elimination of selenium mainly involves the faecal and urinary pathways, whereas breath, saliva and hair are minor contributors. Urinary metabolites include trimethylselenium ions, selenosugars and Se-methylselenoneine.ConclusionSelenium is absorbed to a high extent, and selenium from organic sources is more bioavailable than from inorganic sources. Selenium, as expected as an essential trace element, is distributed throughout the body. Selenium is extensively metabolised, and various excretion metabolites have been identified in both urine and breath, while some selenium is also excreted via faeces.  相似文献   

8.
Selenium (Se) is an essential micronutrient for animal and human nutrition, but whether it is essential to plants remains controversial. However, there are increasing experimental evidences that indicate a protective role of Se against the oxidative stress in higher plants through Se-dependent glutathione peroxidase (GSH-Px) activity. The effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile. Moreover, a soil–plant relationship for Se was determined and a simple method to extract available Se from acid soils is proposed. In a 55-day experiment ryegrass seeds were sown in pots and soil was treated with sodium selenite or sodium selenate (0–10 mg Se kg−1). The results showed that the Se concentration in shoots increased with the application of both selenite and selenate. However, the highest shoot Se concentrations were obtained in selenate-treated plants. For both sources of Se, there was a significant positive correlation between the shoot Se concentration and the GSH-Px activity; and the Se-dependence of this enzymatic activity was related especially with the chemical form of applied Se rather than the Se concentration in plant tissues. Furthermore, the lipid peroxidation, as measured by Thiobarbituric Acid Reactive Substances (TBARS), decreased at low levels of shoot Se concentration, reaching the lowest level at approximately 20 mg Se kg−1 in plants and then increased steadily above this level. In addition, the acid extraction method used to evaluate available Se in soil showed a positive good correlation between soil Se and shoot Se concentrations irrespective of chemical form of Se applied.  相似文献   

9.
1. Environmental toxicology emphasizes the difference from traditional toxicology in which pure compounds of interest are added to purified diets, or injected into the test animals. When the objective is to study the fate and effects of trace elements in the environment, knowledge of the speciation of the elements and their physico-chemical forms is important.2. Cadmium salts such as the sulfides, carbonates or oxides, are practically insoluble in water. However, these can be converted to water-soluble salts in nature under the influence of oxygen and acids. Chronic exposure to Cd is associated with renal toxicity in humans once a critical body burden is reached.3. The solubility of As(III) oxide in water is fairly low, but high in either acid or alkali. In water, arsenic is usually in the form of the arsenate or arsenite. As(III) is systemically more poisonous than the As(V), and As(V) is reduced to the As(III) form before exerting any toxic effects. Organic arsenicals also exert their toxic effects in vivo in animals by first metabolizing to the trivalent arsenoxide form. Some methyl arsenic compounds, such as di- and trimethylarsines, occur naturally as a consequence of biological activity. The toxic effect of arsenite can be potentiated by dithiols, while As has a protective effect against the toxicity of a variety of forms of Se in several species.4. Selenium occurs in several oxidation states and many selenium analogues of organic sulfur compounds exist in nature. Selenium in selenate form occurs in alkaline soils, where it is soluble and easily available to plants. Selenite binds tightly to iron and aluminum oxides and thus is quite insoluble in soils. Hydrogen selenide is a very toxic gas at room temperature. The methylated forms of Se are much less toxic for the organism than selenite. However, the methylated Se derivatives have strong synergistic toxicity with other minerals such as arsenic.5. Aquatic organisms absorb and retain Hg in the tissues, as methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts.  相似文献   

10.
Selenium (Se) is an essential micronutrient and is circulated to the food chain through crops. Brassica species are efficient in Se accumulation and thus, good species for Se biofortification purposes. The residual fraction obtained after oil processing of Brassica seeds, the meal, is an important protein source in animal diets and used in feed concentrates. The accumulation of soil or foliar applied Se in the seeds and meal of Brassica napus and B. rapa as well as its effects on growth and yield formation was studied in two field experiments. Also, a HPLC-ICP-MS based method for the identification and quantification of Se species in Brassica seeds and meal was developed. Selenium application did not affect the yield or oil content. High accumulation of Se in the seeds and meal (1.92–1.96 μg Se g?1) was detected. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS previous enzymatic hydrolysis for species extraction. The Se speciation studies showed that up to 85% of the total Se was SeMet whereas other Se-species were not detected. We conclude that the agronomic biofortification of Brassica species can improve the nutritive quality of the protein rich meal fraction as it contains significant amount of SeMet.  相似文献   

11.
Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.  相似文献   

12.
Summary Selenium has been suggested to enhance the histochemical staining of mercury when sections of tissue are subjected to the silver-enhancement method. In the present study, histochemical staining patterns of mercury in tissue sections of rat livers were compared with the actual content of organic and inorganic Hg in the livers, in both the presence and the absence of Se. Rats were injected intravenously with 5g of Hgg–1 body weight as methyl [203Hg] mercury chloride (MeHg) or as [203Hg]mercuric chloride (Hg2+). After 2h, half the rats received an additional intraperitoneal injection of 2g of Se g–1 body weight as sodium [75Se]selenite. All the rats were killed 1h later. Homogenized liver samples were prepared for mercury analysis by two different methods: alkaline digestion and ultrasonic disintegration. Quantitative chemical analysis based on benzene extrction of the radioactively labelled Hg compounds showed that the chemical form of mercury, either organic or inorganic, was preserved from its administration to its deposition in the liver. Light and electron microscopy demonstrated that no silver enhancement of Hg occurred when MeHg alone was present in the sections of tissue, whereas MeHg accompanied by Se induced a moderate deposition of silver grains. In contrast, sections containing Hg2+ alone yielded some staining, and the addition of Se increased the staining dramatically. The results of the present study show that acute selenite pretreatment is a prerequisite for the histochemical demonstration of methyl mercury, and greatly increases the staining of inorganic mercury when applying the silver-enhancement method.  相似文献   

13.
Selenium (Se) is found in inorganic and organic forms, both of which are commonly used in animal feed supplements. The aim of this study was to determine the impact of the chemical form of Se on its associated ameliorative effects on cadmium (Cd)-induced DNA damage in a porcine model. At a cellular level, Cd mediates free oxygen radical production leading in particular to DNA damage, with consequential mutagenesis and inhibition of DNA replication. In this study, porcine jejunal epithelial cells (IPEC-J2) were pre-incubated for 48 h with one of Se-yeast (Sel-Plex), selenomethionine (Se-M), sodium selenite (Se-Ni) or sodium selenate (Se-Na). The effects of this supplementation on cell viability and DNA damage following cadmium chloride (CdCl2) exposure were subsequently evaluated. IPEC-J2 cells were cultivated throughout in medium supplemented with porcine serum to generate a superior model that recapitulated the porcine gut epithelium. The results illustrated that Se antioxidant effects were both composition- and dose-dependent as evident from cell viability (Alamar Blue and 5-carboxyfluorescein diacetate acetoxymethyl ester) and DNA damage assays (Comet and TUNEL). Both the Se-yeast and Se-M organic species, when used at the European Food Safety Authority guideline levels, had a protective effect against Cd-induced DNA damage in the IPEC-J2 model system whereas for inorganic Se-Ni and Se-Na sources no protective effects were observed and in fact these were shown to enhance the negative effects of Cd-induced DNA damage. It can be concluded that nutritional supplementation with organoselenium may protect porcine gut integrity from damage induced by Cd.  相似文献   

14.
Selenium as an anti-oxidant and pro-oxidant in ryegrass   总被引:12,自引:1,他引:12  
Hartikainen  Helinä  Xue  Tailin  Piironen  Vieno 《Plant and Soil》2000,225(1-2):193-200
Selenium is an essential element for antioxidation reactions in human and animals. In order to study its biological role in higher plants, ryegrass (Lolium perenne) was cultivated in a soil without Se or amended with increasing dosages of H2SeO4 (0.1, 1.0, 10.0 and 30.0 mg Se kg−1). Ryegrass was harvested twice and the yields were analyzed for antioxidative systems and growth parameters. Selenium exerted dual effects: At low concentrations it acted as an antioxidant, inhibiting lipid peroxidation, whereas at higher concentrations, it was a pro-oxidant, enhancing the accumulation of lipid peroxidation products. The antioxidative effect was associated with an increase in glutathione peroxidase (GSH-Px) activity, but not with superoxide dismutase (SOD) and αα-tocopherol, which was the only tocopherol detected. In the second yield, the diminished lipid peroxidation due to a proper Se addition coincided with promoted plant growth. The oxidative stress found at the Se addition level ≥ 10 mg kg−1 resulted in drastic yield losses. This result indicates that the toxicity of Se can be attributed, in addition to metabolic disturbances, to its pro-oxidative effects. Neither the growth-promoting nor the toxic effect of Se could be explained by the changes in the total chlorophyll concentration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Selenium (Se) is an essential element for most eukaryotic organisms, including humans. The balance between Se toxicity and its beneficial effects is very delicate. It has been demonstrated that a diet enriched with Se has cancer prevention potential in humans. The most popular commercial Se supplementation is selenized yeast, which is produced in a fermentation process using an inorganic source of Se. Here, we show that the uptake of Se, Se toxic effects and intracellular Se-metabolite profile are largely influenced by the level of sulphur source supplied during the fermentation. A Yap1-dependent oxidative stress response is active when yeast actively metabolizes Se, and this response is linked to the generation of intracellular redox imbalance. The redox imbalance derives from a disproportionate ratio between the reduced and oxidized forms of glutathione and also from the influence of Se metabolism on the central carbon metabolism. The observed increase in glycerol production rate, concomitant with the inhibition of ethanol formation in the presence of Se, can be ascribed to the occurrence of redox imbalance that triggers glycerol biosynthesis to replenish the pool of NAD(+) .  相似文献   

17.
Zinc (Zn) is recognized as an essential nutrient, and is added as a supplement to animal and human diets. There are claims that zinc methionine (ZnMet) forms a stable complex that is preferentially transported into tissues, and this has contributed to uncertainty about conflicting reports on the bioavailability of various Zn compounds. This study evaluated the cellular and intestinal uptake of inorganic and organic forms of Zn. Steady-state uptake of65Zn by human intestine epithelial cells, and monkey kidney fibroblasts was not significantly different with zinc chloride (ZnCl2), ZnMet, or zinc propionate (ZnProp) (P > 0.05). Uptake of65Zn from zinc chelated with EDTA was significantly lower (P < 0.01). In live mice,65Zn uptake by perfused intestine and deposition in intestine and liver showed no significant difference between ZnCl2 and ZnMet. Equimolar [65Zn]methionine and zinc[35S]methionine were prepared according to a patented method that yields “ complexed” Zn. Cellular uptake of the radiolabeled methionine was <0.1% of the radiolabeled Zn from these complexes, indicating separate uptake of the Zn and methionine. Gel filtration did not distinguish between65Zn in ZnCl2, ZnProp, or reagent ZnMet, though feed-grade ZnMet containing >10% protein did give a higher-mol-wt form of65Zn. Results of this study show equivalent uptake of Zn from inorganic and organic compounds, and support recent feed trials on Zn bioavailability.  相似文献   

18.
Selenium (Se) phytovolatilization, the process by which plants metabolize various inorganic or organic species of Se (e.g. selenate, selenite, and Se-methionine [Met]) into gaseous Se forms (e.g. dimethylselenide), is a potentially important means of removing Se from contaminated environments. Before attempting to genetically enhance the efficiency of Se phytovolatilization, it is essential to elucidate the enzymatic pathway involved and to identify its rate-limiting steps. The present research tested the hypothesis that S-adenosyl-L-Met:L-Met S-methyltransferase (MMT) is the enzyme responsible for the methylation of Se-Met to Se-methyl Se-Met (SeMM). To this end, we identified and characterized an Arabidopsis T-DNA mutant knockout for MMT. The lack of MMT in the Arabidopsis T-DNA mutant plant resulted in an almost complete loss in its capacity for Se volatilization. Using chemical complementation with SeMM, the presumed enzymatic product of MMT, we restored the capacity of the MMT mutant to produce volatile Se. Overexpressing MMT from Arabidopsis in Escherichia coli, which is not known to have MMT activity, produced up to 10 times more volatile Se than the untransformed strain when both were supplied with Se-Met. Thus, our results provide in vivo evidence that MMT is the key enzyme catalyzing the methylation of Se-Met to SeMM.  相似文献   

19.
To determine which of a variety of inorganic and organic selenium compounds could best stimulate glutathione peroxidase, human lymphocytes were cultured with a number of selenium sources. The phytohemagglutinin-transformed lymphocytes were cultured in the presence of75Se bound to serum proteins (25% v/v) or 10?7 M concentrations of [75Se]-selenite, [75Se]-selenate, [75Se]-selenocystine, and [75Se]-selenomethionine. Organic forms of selenium were taken up in preference to inorganic forms. Control cultures, from which exogenous selenium had been omitted, showed a decreased level of glutathione peroxidase activity at the end of a 4 d culture period. Of the Se sources tested, [75Se]-selenocystine and [75Se]-labeled fetal calf serum proteins increased enzyme activity significantly, 79 and 47%, respectively, but selenite increased activity only by 7%. These results indicate that selenium from the two organic sources is most readily available for glutathione peroxidase synthesis.  相似文献   

20.
Selenium (Se), an essential micronutrient, is believed to enhance neutrophil functions. This study aimed to compare the effects of supplemented organic (Sel-Plex®) and inorganic (sodium selenite) Se on neutrophil functions in high-producing dairy cows, during the periparturient period. Twenty-five Holstein cows were randomly allocated to five dietary treatments as follows: control diet (basal diet without Se supplementation), IN 0.3 (basal diet supplemented with inorganic Se at 0.3 mg/kg dry matter (DM)), IN 0.5 (inorganic Se at 0.5 mg/kg DM), OR 0.3 (organic Se at 0.3 mg/kg DM) and OR 0.5 (organic Se at 0.5 mg/kg DM). Some evaluated parameters included neutrophil functions and plasma Se concentrations in cows and plasma Se concentrations in calves. Neutrophil phagocytosis did not significantly differ among the five groups. However, organic Se supplementation significantly increased (P < 0.01) the respiratory burst of neutrophils when compared to cows fed IN 0.3 and the control diet. In comparison to inorganic Se, neutrophil apoptosis was decreased (P < 0.01) when cows were fed organic Se or the control diets. These effects of organic Se on respiratory burst activities and apoptosis of neutrophils were in a dose-dependent manner. Calf plasma Se concentrations were higher (P < 0.05) when cows were fed OR 0.5 and IN 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号