首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of some of the clinically important enzymes was investigated in leukemic sera at 37 degrees, using the Beckman Enzyme Activity Analyzer were found to be slightly elevated in some untreated cases of leukemia (1.), while ALP was found to be frequently elevated. Untreated patients with l. had normal or below normal SCPK activity. The most characteristic and significant rise in activity, was found to be associated with SLDH and SHBDH in most cases of acute l. (86%) and in CML, while any elevation observed in CLL, was very slight. The general kinetic parameters of SLDH and SHBDH, were investigated at 37 degrees in acute leukemic patients. These included optimum substrate concentrations (NADH, pyruvate, and 2-oxobutyrate), the rate of pyruvate and 2-oxobutyrate reduction, substrate-velocity relationship, Km (pyruvate), Km (NADH), Km (2-oxobutyrate) as well as the effect of temperature and pH on the kinetics of the reaction. These kinetic characteristics were found to be differently affected by the leukemic process.  相似文献   

2.
Purification and properties of rat brain pyruvate kinase   总被引:1,自引:0,他引:1  
Rat brain pyruvate kinase was purified to near homogeneity by a three-step process involving ammonium sulfate precipitation and phosphocellulose and Blue-Sepharose CL-6B column chromatography. The enzyme migrated on polyacrylamide gel along with a commercial sample of rabbit muscle pyruvate kinase. The enzyme showed a hyperbolic relationship with phosphoenolpyruvate and ADP, with apparent Km's of 0.18 and 0.42 X 10(-3) M, respectively. The enzyme was inhibited by ATP, the effect being more pronounced at unsaturating concentrations of phosphoenolpyruvate. L-Phenylalanine was found to be a strong inhibitor of the enzyme, with the Ki for inhibitor being 0.11 mM. The inhibition by phenylalanine was more pronounced at pH 7.4 than at pH 7.0, and appeared to be competitive with phosphoenolpyruvate. L-Alanine and fructose 1,6-bisphosphate prevented the inhibition of the enzyme by phenylalanine. Ca2+ was found to be a strong inhibitor of the enzyme, and the inhibition was more marked at saturating phosphoenolpyruvate concentrations. The kinetic properties of the purified brain pyruvate kinase suggest that the enzyme may be distinct from the muscle or liver enzymes.  相似文献   

3.
1. N10-Formyltetrahydrofolate dehydrogenase was purified to homogeneity from rat liver with a specific activity of 0.7--0.8 unit/mg at 25 degrees C. The enzyme is a tetramer (Mw = 413,000) composed of four similar, if not identical, substrate addition and give the Km values as 4.5 micron [(-)-N10-formyltetrahydrofolate] and 0.92 micron (NADP+) at pH 7.0. Tetrahydrofolate acts as a potent product inhibitor [Ki = 7 micron for the (-)-isomer] which is competitive with respect to N10-formyltetrahydrofolate and non-competitive with respect to NADP+. 3. Product inhibition by NADPH could not be demonstrated. This coenzyme activates N10-formyltetrahydrofolate dehydrogenase when added at concentrations, and in a ratio with NADP+, consistent with those present in rat liver in vivo. No effect of methionine, ethionine or their S-adenosyl derivatives could be demonstrated on the activity of the enzyme. 4. Hydrolysis of N10-formyltetrahydrofolate is catalysed by rat liver N10-formyltetrahydrofolate dehydrogenase at 21% of the rate of CO2 formation based on comparison of apparent Vmax. values. The Km for (-)-N10-folate is a non-competitive inhibitor of this reaction with respect to N10-formyltetrahydrofolate, with a mean Ki of 21.5 micron for the (-)-isomer. NAD+ increases the maximal rate of N10-formyltetrahydrofolate hydrolysis without affecting the Km for this substrate and decreases inhibition by tetrahydrofolate. The activator constant for NAD+ is obtained as 0.35 mM. 5. Formiminoglutamate, a product of liver histidine metabolism which accumulates in conditions of excess histidine load, is a potent inhibitor of rat liver pyruvate carboxylase, with 50% inhibition being observed at a concentration of 2.8 mM, but has no detectable effect on the activity of rat liver cytosol phosphoenolpyruvate carboxykinase measured in the direction of oxaloacetate synthesis. We propose that the observed inhibition of pyruvate carboxylase by formiminoglutamate may account in part for the toxic effect of excess histidine.  相似文献   

4.
Clostridium formicoaceticum homofermentatively converts lactate to acetate at 37 degrees C and pH 6.6-9.6. However, this fermentation is strongly inhibited by acetic acid at acidic pH. The specific growth rate of this organism decreased from a maximum at pH 7.6 to zero at pH 6.6. This inhibition effect was found to be attributed to both H(+) and undissociated acetic acid. At pH values below 7.6, the H(+) inhibited the fermentation following non-competitive inhibition kinetics. The acetic acid inhibition was found to be stronger at a lower medium pH. At pH 6.45-6.8, cell growth was found to be primarily limited by a maximum undissociated acetic acid concentration of 0.358 g/L (6mM). This indicates that the undissociated acid, not the dissociated acid, is the major acid inhibitor. At pH 7.6 or higher, this organism could tolerate acetate concentrations of higher than 0.8M, but salt (Na(+)) became a strong inhibitor at concentrations of higher than 0.4M. Acetic acid inhibition also can be represented by noncompetitive inhibition kinetics. A mathematical model for this homoacetic fermentation was also developed. This model can be used to simulate batch fermentation at any pH between 6.9 and 7.6.  相似文献   

5.
Type I hexokinase (ATP:D-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (less than 10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

6.
A novel class of inhibitors for the branched-chain 2-oxo acid dehydrogenase (BCOAD) complex has been synthesized and studied. The sodium salts of arylidenepyruvates: e.g., furfurylidenepyruvate (compound I), 4-(3-thienyl)-2-oxo-3-butenoate (compound II), cinnamalpyruvate (compound III) and 4-(2-thienyl)-2-oxo-3-butenoate (compound IV) inhibit the overall and kinase reactions of the BCOAD complex from bovine liver. Inhibitions of the overall reaction occur at the decarboxylase (E1) step as determined by a spectrophotometric assay with 2,6-dichlorophenolindophenol as an electron acceptor. Inhibition of the E1 reaction by compound I (Ki = 0.5 microM) is competitive, whereas inhibitions by compounds II (Ki = 150 microM) and III (Ki = 500 microM) are non-competitive with respect to the substrate 2-oxoisovalerate. The Km value for 2-oxoisovalerate is 6.7 microM as measured by the E1 assay. Inhibition of the E1 step by compounds I, II and III are reversible at low inhibitor concentrations based on the Michaelis-Menten kinetics observed. By comparison, compound I does not significantly inhibit pyruvate and 2-oxoglutarate dehydrogenase complexes. The arylidenepyruvates (compounds I, II and IV) inhibit the BCOAD kinase reaction in a manner similar to the substrate 2-oxo acids. The inhibition of the kinase reaction by compound I is non-competitive with respect to ATP, with an apparent Ki value of 4.5 mM. The results suggest that arylidenepyruvates may be useful probes for elucidating the reaction mechanisms of the BCOAD complex and its kinase.  相似文献   

7.
Low concentrations (less than 0.2% w/v) of phenoxyethanol stimulated both the rate of respiration and total oxygen uptakes of Escherichia coli NCTC 5933 suspensions with glucose and other substrates, whilst higher concentrations (0.2--0.6% w/v) although still below those showing significant bactericidal activity, produced progressive levels of inhibition. The degree of respiratory inhibition varied with different substrates in the order malate less than succinate less than pyruvate less than or equal to glucose less than lactate, and suggested appreciable inhibition at a point after malate in the tricarboxylic acid cycle. This suggestion was supported by the use of tetrazolium salts as alternative electron acceptors, and by cytochrome difference spectra, which together implicated malate dehydrogenase as the most likely site of action. Isolated dehydrogenase enzymes of the tricarboxylic acid cycle in cell-free preparations were unaffected by high concentrations of phenoxyethanol (0.8% w/v) with the exception of malate dehydrogenase which was inhibited in extracts to extents similar to those of malate oxidation by intact bacteria. Lineweaver-Burke plots for malate dehydrogenase activity in the presence of phenoxyethanol suggested a competitive inhibition of the oxaloacetic acid-limited reaction and a non-competitive inhibition of the NADH-limited reaction. Accordingly, Ki values were found to be low when the rate of reaction was limited by oxaloacetic acid concentration yet relatively high when NADH was rate limiting.  相似文献   

8.
Cooperative interaction of pyruvate with the pyruvate dehydrogenase (PD) complex from pigeon breast muscle was shown. The sigmoidal dependence of the reaction rate on pyruvate concentration was observed for the PD complex. The Hill coefficient is equal to 1,5; no inhibition by the substrate (up to 2.2.10(-3) M) was found. The kinetic behaviour of the isolated pyruvate dehydrogenase component (PDH) analyzed under similar conditions, is more complex; this may be probably due to the presence of oligomeric forms with different molecular weights and specific activities. The competitive inhibitor of the PD complex--an amide of pyruvic acid (PA) (Ki=6.3-10(-6) M) activates the enzyme at low concentrations (less than 2,10(-6) M). When PA is present, the dependence of the reaction rate on pyruvate concentration gives a usual hyperbolic curve, v of [S]o. It is concluded that pyruvate may have a regulatory effect on the activity of muscle PD complex.  相似文献   

9.
Isolated HeLa cell nuclei were treated with NaCl at various concentrations and inhibition by aphidicolin of DNA synthesis in the treated nuclei was studied. The inhibition was either noncompetitive or of the mixed type with respect to each dNTP when the nuclei were treated with NaCl at concentrations lower than 0.08 M. However, aphidicolin was a competitive inhibitor with respect to dCTP and a non-competitive or mixed type inhibitor with respect to the other 3 dNTPs when they were treated with NaCl at concentrations higher than 0.1 M. These results suggest the presence of nuclear factor(s) responsible for the changes in the inhibitory mode of aphidicolin on endogenous nuclear DNA synthesis.  相似文献   

10.
1. A method is described for the purification of a form of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) that probably differs from that of the native enzyme. 2. The kinetics of the reaction catalysed by 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) shows that the reaction proceeds via a ping-pong bi-bi mechanism, with activation by phosphoenolpyruvate (P-Prv), the first substrate, and inhibition by erythrose 4-phosphate (Ery-P) the second substrate. At low substrate concentrations, KP-Prv is 0.1 mM and KEry-P is 0.13 mM. 3. The substrates phosphoenolpyruvate and erythrose 4-phosphate and the product inorganic phosphate can protect the purified enzyme against heat denaturation, whereas the inhibitor, tryptophan, has no effect, although it binds to the enzyme in the absence of other ligands. 4. Product inhibition by inorganic phosphate is linear non-competitive with respect to phosphoenolpyruvate (Ki, slope = 22 mM and Ki, intercept = 54 mM) and substrate-linear competitive with respect to erythrose 4-phosphate (Ki, slope = 25 mM). 5. The enzyme has an activity optimum at pH 7.3 and a tryptophan inhibition optimum at pH 6.4, Trp 0.5 is 4 microM. Inhibition by tryptophan is non-competitive with respect to phosphoenolpyrovate and substrate-parabolic competitive with respect to erythrose 4-phosphate. 6. The role of the enzyme in metabolic regulation is discussed.  相似文献   

11.
Decarbamylation rate of membrane-bound methyl- and dimethyl-carbamylated acetylcholinesterase of human erythrocytes and bovine brain is reliably 1.1-1.6 times lower than that of the soluble enzyme. Such reversible inhibitors as tacrine (of non-competition action), ambenonium (mixed action) and galanthamine (competitive type of action) decelerate the decarbamylation rate of acetylcholinesterase. At pH 6 tacrine inhibits the reduction rate of soluble acetylcholinesterase activity of human erythrocytes more intensively than that of membrane-bound acetylcholinesterase. No differences in decarbamylation rate were found for the both forms of the enzyme at pH 8. Tacrine, a non-competitive inhibitor in concentrations below the inhibition constant (Ki = 1.4 x 10(-7) M) exerts the most intensive effect on the decarbamylation rate of methyl- and dimethylcarbamylated acetylcholinesterase of the mouse brain, while ambenonium and galanthamine in concentrations much (tens times) exceeding their Ki (3.1 x 10(-10) M and 4.4 x 10(-7) M, respectively) provide a decrease of the decarbamylation rate.  相似文献   

12.
Kinetic analysis showed that the alkaloid caffeine is a competitive inhibitor of the enzyme lactate dehydrogenase with respect to substrate pyruvate, and a non-competitive inhibitor with respect to the coenzyme NADH. The inhibitor constant Ki is 0,54 mM. Scatchard analysis determined the dissociation constant for a single independent binding site of the ternary lactate dehydrogenase - NADH - caffeine complex (KE-NADH-CAFFEINE) and the number of binding sites to be 0,14 mM and 3,83 respectively. Caffeine binds to a hydrophobic domain in the substrate binding site. Alternate nucleophilic - electrophilic functionalities within the inhibitor molecule are proposed to be the fundamental reason for the inhibition.  相似文献   

13.
1. Studies on the kinetics of pyruvate transport into mitochondria by an 'inhibitor-stop' technique were hampered by the decarboxylation of pyruvate by mitochondria even in the presence of rotenone. Decarboxylation was minimal at 6 degrees C. At this temperature the Km for pyruvate was 0.15 mM and Vmax. was 0.54nmol/min per mg of protein; alpha-cyano-4-hydroxycinnamate was found to be a non-competitive inhibitor, Ki 6.3 muM, and phenyl-pyruvate a competitive inhibitor, Ki 1.8 mM. 2. At 100 muM concentration, alpha-cyano-4-hydroxycinnamate rapidly and almost totally inhibited O2 uptake by rat heart mitochondria oxidizing pyruvate. Inhibition could be detected at concentrations of inhibitor as low as 1 muM although inhibition took time to develop at this concentration. Inhibition could be reversed by diluting out the inhibitor. 3. Various analogues of alpha-cyano-4-hydroxycinnamate were tested on rat liver and heart mitochondria. The important structural features appeared to be the alpha-cyanopropenoate group and the hydrophobic aromatic side chain. Alpha-Cyanocinnamate, alpha-cyano-5-phenyl-2,4-pentadienoate and compound UK 5099 [alpha-cyano-beta-(2-phenylindol-3-yl)acrylate] were all more powerful inhibitors than alpha-cyano-4-hydroxycinnamate showing 50% inhibition of pyruvate-dependent O2 consumption by rat heart mitochondria at concentrations of 200, 200 and 50 nM respectively. 4. The specificity of the carrier for its substrate was studied by both influx and efflux experiments. Oxamate, 2-oxobutyrate, phenylpyruvate, 2-oxo-4-methyl-pentanoate, chloroacetate, dichloroacetate, difluoroacetate, 2-chloropropionate, 3-chloropropionate and 2,2-dichloropropionate all exchanged with pyruvate, whereas acetate, lactate and trichloroacetate did not. 5. Pyruvate entry into the mitochondria was shown to be accompanied by the transport of a proton (or by exchange with an OH-ion). This proton flux was inhibited by alpha-cyano-4-hydroxycinnamate and allowed measurements of pyruvate transport at higher temperatures to be made. The activation energy of mitochondrial pyruvate transport was found to be 113 kJ (27 kcal)/mol and by extrapolation the rate of transport of pyruvate at 37 degrees C to be 42 nmol/min per mg of protein. The possibility that pyruvate transport into mitochondria may be rate limiting and involved in the regulation of gluconegenesis is discussed. 6. The transport of various monocarboxylic acids into mitochondria was studied by monitoring proton influx. The transport of dichloroacetate, difluoroacetate and oxamate appeared to be largely dependent on the pyruvate carrier and could be inhibited by pyruvate-transport inhibitors. However, many other halogenated and 2-oxo acids which could exchange with pyruvate on the carrier entered freely even in the presence of inhibitor.  相似文献   

14.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

15.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

16.
A general treatment of very tight-binding inhibition is described. It was applied to purified endogenous RNAase inhibitor from rat testis. This treatment discriminates among the different types of inhibition and allows for calculation of the inhibition parameters. When very tight-binding inhibitions are studied at similar molar concentrations of both enzyme and inhibitor, a further approach is required. This is also described and applied to the RNAase inhibitor. A Ki value of 3.2 x 10(-12) M was found for this inhibitor protein. On the basis of this result, it was considered inappropriate to classify this type of inhibitor in terms of competitive or non-competitive, as has been done for such inhibitors so far. Functional consequences of this analysis are discussed for the RNAase-RNAase inhibitor system.  相似文献   

17.
Indomethacin inhibition of glutathione S-transferases   总被引:4,自引:0,他引:4  
Indomethacin inhibited rat liver glutathione S-transferases (EC 2.5.1.18). Its inhibition was non-competitive with respect to 3,4-dichloronitrobenzene with an apparent Ki of 5.3 X 10(-5) M and uncompetitive with respect to glutathione with an apparent Ki of 4.0 X 10(-5) M. 4-Chlorobenzoic acid and 5-methoxy-2-methylindole-3-acetic acid, two metabolites of indomethacin, were weak inhibitors of the enzymes. On the other hand, meclofenamic acid was a competitive inhibitor of the enzymes with an apparent Ki of 3.0 X 10(-4) M. Possible significance of these findings in arachidonic acid metabolism is discussed.  相似文献   

18.
NADP+-isocitrate dehydrogenase (EC 1.1.1.42) was purified more than 1500-fold from the host-plant cytosol of Medicago sativa L. cv. Saranac root nodules by ion exchange and affinity chromatography. The forward reaction was characterized. The enzyme exhibited an absolute requirement for a divalent cation (preferably Mn2+), had a broad activity optimum from pH 7.5 to 9.0, and was most stable at pH 7.5. The apparent Arrhenius energy of activation was 70.7 kJ mol−1 (20 to 30°C) indicating that the reaction rate of the enzyme was relatively sensitive to temperature. The Km for isocitrate was 20 μ M and for NADP+ 10.7 μ M . Initial velocity and end product inhibition studies of the forward reaction indicate a random bi ter mechanism. End product studies indicated that NADPH was a competitive inhibitor and α-ketoglutarate was a non-competitive inhibitor with respect to isocitrate and NADP+. Citrate was a competitive inhibitor with respect to isocitrate. Glutamine was identified as a positive effector when assays were conducted at non-saturating isocitrate concentrations. The potential significance of glutamine regulation of α-ketoglutarate production in a dinitrogen-fixing tissue is discussed.  相似文献   

19.
p-nitrophenyl phosphatase activity is high in porcine neutrophils and was found in plasma membrane and granule fractions isolated from sucrose density gradients after nitrogen cavitation to disrupt the cells. Very little activity was found in the cytosol. The enzyme has optimum activity at alkaline pHs with a pH optimum of 10.3. The pH profile was fairly broad with activity still remaining at physiological pH. Orthovanadate was shown to be a potent competitive inhibitor of the enzyme with a Ki of 14 microM. Phosphate also inhibited but at millimolar concentrations and the two inhibitors bind in a mutually exclusive fashion. Evidence from experiments using divalent ion chelators and zinc ions suggested that the phosphatase is a zinc metalloenzyme. Beryllium was found to be a very potent, non-competitive inhibitor of the neutrophil enzyme (Ki = 1.1 microM). Levamisole and theophylline were both shown to be uncompetitive inhibitors of the porcine phosphatase (Ki = 0.2 mM and 1.2 mM respectively). The neutrophil phosphatase was inhibited by L-homoarginine but unaffected by L-phenylalanine and L-glutamate.  相似文献   

20.
Tyrosine hydroxylation was studied in intact cells of mouse neuroblastoma clone N1E-115 which have high levels of tyrosine 3-monooxygenase (EC 1.14.16.2) and which have been fully characterized for tyrosine transport. Measurement of [3H]OH formed from L-[3,5(-3)H]tyrosine in the medium was the method of assay and [3H]OH formed was stoichiometric with the formation of L-[3H]3,4-dihydroxyphenylalanine. Tyrosine hydroxylation was dependent on time of incubation, cell number, and the concentration of [3H]tyrosine in the medium. From velocity vs. [3H]tyrosine concentration experiments, two apparent Km values were obtained: Km1 = 10 +/- 2 microM; Km2 = 140 +/- 10 microM. Substrate inhibition occurred with tyrosine concentrations between 20 and 50 microM. The reaction was twice as fast at pH 5.5 as at pH 7.4. alpha,alpha'-Dipyridyl (1 mM) caused major inhibition (75%) when [3H]tyrosine concentration was 10 microM. L-3-Iodotyrosine was a competitive inhibitor with Ki = 0.3 microM. Dopamine was a non-competitive inhibitor with Ki = 500 microM. 1-Norepinephrine had no effect. These results show that the hydroxylation of tyrosine by living N1E-115 cells has many of the properties of the reaction catalyzed by purified tyrosine 3-monooxygenase from normal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号