首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain–domain mobility without the need for external alignment media. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
This work shows that the partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ in Ca2+/calmodulin systems in solution allows the measurement of interdomain NMR pseudocontact shifts and leads to magnetic alignment of the molecule such that significant residual dipolar couplings can be measured. Both these parameters can be used to provide structural information. Species in which Tb3+ ions are bound to only one domain of calmodulin (the N-domain) and Ca2+ ions to the other (the C-domain) provide convenient systems for measuring these parameters. The nuclei in the C-domain experience the local magnetic field induced by the paramagnetic Tb3+ ions bound to the other domain at distances of over 40 Å from the Tb3+ ion, shifting the resonances for these nuclei. In addition, the Tb3+ ions bound to the N-domain of calmodulin greatly enhance the magnetic susceptibility anisotropy of the molecule so that a certain degree of alignment is produced due to interaction with the external magnetic field. In this way, dipolar couplings between nuclear spins are not averaged to zero due to solution molecular tumbling and yield dipolar coupling contributions to, for example, the one-bond 15N-1H splittings of up to 17 Hz in magnitude. The degree of alignment of the C-domain will also depend on the degree of orientational freedom of this domain with respect to the N-domain containing the Tb3+ ions. Pseudocontact shifts for NH groups and 1H-15N residual dipolar couplings for the directly bonded atoms have been measured for calmodulin itself, where the domains have orientational freedom, and for the complex of calmodulin with a target peptide from skeletal muscle myosin light chain kinase, where the domains have fixed orientations with respect to each other. The simultaneous measurements of these parameters for systems with domains in fixed orientations show great potential for the determination of the relative orientation of the domains.  相似文献   

3.
Summary Two-dimensional sequence-specific1H NMR resonance assignment methodology (Wüthrich, 1986) has been applied for the first time to a 18-kDa paramagnetic hemoprotein (cyano-metAplysia Mb) to identify all the hyperfine-shifted residues. The assignment was greatly facilitated by the fact that hyperfine shifts of residues impart a strong temperature dependence to the cross peaks, which aids location and identification, and provides improved spectral dispersion, particularly in the fingerprint region. 2D COSY and TOCSY were found to be surprisingly effective in locating the complete spin connectivities of all of the hyperfine-shifted residues, with the exception of the axially coordinated His95 imidazole ring, whose proton resonances were found to exhibit severe line broadening (> 400 Hz). Conventional 1D NOE and NOESY with short mixing times, combined with paramagnetic-induced relaxation effects, led to the successful assignment of even extremely broad proton signals. Three helical stretches and two loop regions were identified as the source of all hyperfine-shifted residues: the F helical residues 3–9, the E-helix residues 6–14, the G-helix residues 5–9, the FG-loop residues 1–4 and the CD-loop residues 1–4. These segments comprise all the residues that make contact with the heme and modulate the reactivity of the prosthetic group. The sequence-specific identifications of the active-site residues revealed that the solution structure ofAplysia metMbCN is fully consistent with that observed by X-ray diffraction in single crystals for a variety of other derivatives, except for the distal Arg66 (E10), which is turned into the heme pocket, as found only in the metMbF crystal structure (Bolognesi et al., 1990). The ready identification, by their temperature sensitivity, and the complete assignments of all hyperfine-shifted residues ofAplysia metMbCN demonstrate that sequence-specific assignment can be profitably applied to paramagnetic proteins, and that it should be possible to determine the solution structures of paramagnetic proteins, at least for low-spin complexes, by using NMR techniques used for diamagnetic proteins.  相似文献   

4.
The binding ability of a protein with a metal binding tag towards Ni(2+) was investigated by longitudinal paramagnetic NMR relaxation, and the possibility of obtaining long-range structure information from the paramagnetic relaxation was explored. A protein with a well-defined solution structure (Escherichia coli thioredoxin) was used as the model system, and the peptide His-His-Pro (HHP) fused to the N-terminus of the protein was used as the metal binding tag. It was found that the tag forms a stable dimer complex with the paramagnetic Ni(2+) ion, where each metal ion binds two HHP-tagged protein molecules. However, it was also found that additional sites in the protein compete with the HHP-tag for the binding of the metal ion. These binding sites were identified as the side chain carboxylate groups of the aspartic and glutamic acid residues. Yet, the carboxylate groups bind the Ni(2+) ions considerably weaker than the HHP-tag, and only protons spatially close to the carboxylate sites are affected by the Ni(2+) ions bound to these groups. As for the protons that are unaffected by the carboxylate-bound Ni(2+) ions, it was found that the long-range distances derived from the paramagnetic relaxation enhancements are in good agreement with the solution structure of thioredoxin. Specifically, the obtained long-range paramagnetic distance constraints revealed that the dimer complex is asymmetric with different orientations of the two protein molecules relative to the Ni(2+) ion.  相似文献   

5.
The global fold of maltose binding protein in complex with -cyclodextrin has been determined using a CNS-based torsion angle molecular dynamics protocol involving direct refinement against dipolar couplings and carbonyl chemical shift changes that occur upon alignment. The shift changes have been included as structural restraints using a new module, CANI, that has been incorporated into CNS. Force constants and timesteps have been determined that are particularly effective in structure refinement applications involving high molecular weight proteins with small to moderate numbers of NOE restraints. Solution structures of the N- and C-domains of MBP calculated with this new protocol are within 2 Å of the X-ray conformation.  相似文献   

6.
In this communication, we suggest that transferred residual dipolar couplings (trRDCs) can be employed to restrain the structure of peptide inhibitors transiently binding to beta-amyloid fibrils. The effect is based on the spontaneous alignment of amyloid fibrils with the fibril axis parallel to the magnetic field. This alignment is transferred to the transiently binding peptide inhibitor and is reflected in the size of the trRDCs. We find that the peptide inhibitor adopts a beta-sheet conformation with the backbone N-H and C-H dipolar vectors aligned preferentially parallel and perpendicular, respectively, to the fibril axis.  相似文献   

7.
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, “High-resolution Iterative Frequency Identification of Couplings” (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C′ RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C′ vector represents a realistic “worst case analysis”. These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2–5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
De novo folding simulations of the major pVIII coat protein from filamentous fd bacteriophage, using a newly developed implicit membrane generalized Born model and replica-exchange molecular dynamics, are presented and discussed. The quality of the predicted structures, judged by comparison of the root-mean-square deviations of a room temperature ensemble of conformations from the replica-exchange simulations and experimental structures from both solid-state NMR in lipid bilayers and solution-phase NMR on the protein in micelles, was quite good, reinforcing the general quality of the folding simulations. The transmembrane helical segment of the protein was well defined in comparison with experiment and the amphipathic helical fragment remained at the membrane/aqueous phase boundary while undergoing significant conformational flexibility due to the loop connecting the two helical segments of the protein. Additional comparisons of computed solid-state NMR properties, the 15N chemical shift and 15N-1H dipolar coupling constants, showed semi-quantitative agreement with the corresponding measurements. These findings suggest an emerging potential for the de novo investigation of integral membrane peptides and proteins and a mechanism to assist experimental approaches to the characterization and structure determination of these important systems.  相似文献   

9.
10.
A computer program (ORB) has been developed to predict 1H,13C and 15N NMR chemical shifts of previouslyunassigned proteins. The program makes use of the information contained in achemical shift database of previously assigned proteins supplemented by astatistically derived averaged chemical shift database in which the shifts arecategorized according to their residue, atom and secondary structure type[Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The predictionprocess starts with a multiple alignment of all previously assigned proteinswith the unassigned query protein. ORB uses the sequence and secondarystructure alignment program XALIGN for this task [Wishart et al. (1994)CABIOS, 10, 121–132; 687–688]. The prediction algorithm in ORB isbased on a scoring of the known shifts for each sequence. The scores dependon global sequence similarity, local sequence similarity, structuralsimilarity and residue similarity and determine how much weight one particularshift is given in the prediction process. In situations where no applicablepreviously assigned chemical shifts are available, the shifts derived from theaveraged database are used. In addition to supplying the user with predictedchemical shifts, ORB calculates a confidence value for every prediction. Theseconfidence values enable the user to judge which predictions are the mostaccurate and they are particularly useful when ORB is incorporated into acomplete autoassignment package. The usefulness of ORB was tested on threemedium-sized proteins: an interleukin-8 analog, a troponin C synthetic peptideheterodimer and cardiac troponin C. Excellent results are obtained if ORB isable to use the chemical shifts of at least one highly homologous sequence.ORB performs well as long as the sequence identity between proteins with knownchemical shifts and the new sequence is not less than 30%.  相似文献   

11.
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1H,-15N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of .5 × 10?5–7.0 × 10?5 M.  相似文献   

12.
Peptide aptamers are peptides constrained and presented by a scaffold protein that are used to study protein function in cells. They are able to disrupt protein-protein interactions and to constitute recognition modules that allow the creation of a molecular toolkit for the intracellular analysis of protein function. The success of peptide aptamer technology is critically dependent on the performance of the scaffold. Here, we describe a rational approach to the design of a new peptide aptamer scaffold. We outline the qualities that an ideal scaffold would need to possess to be broadly useful for in vitro and in vivo studies and apply these criteria to the design of a new scaffold, called STM. Starting from the small, stable intracellular protease inhibitor stefin A, we have engineered a biologically neutral scaffold that retains the stable conformation of the parent protein. We show that STM is able to present peptides that bind to targets of interest, both in the context of known interactors and in library screens. Molecular tools based on our scaffold are likely to be used in a wide range of studies of biological pathways, and in the validation of drug targets.  相似文献   

13.
We have selected the Streptoalloteichus hindustanus bleomycin-resistance protein ShBle, a 28-kDa homodimer, as a scaffold for the display of bioactive peptides and other peptide epitopes. To create a monomeric scaffold, we investigated the effect of mutating residue proline 9 to glycine. This residue plays a critical role in ShBle dimerization by affecting the position of the eight N-terminal residues which secure the interaction between the monomeric subunits. We demonstrate that this mutation weakens the dimerization interaction, resulting in establishment of a stable equilibrium between monomeric and dimeric ShBle species in solution. Circular dichroism and SDS–PAGE data indicate that the Pro9Gly mutation does not disrupt the structure of the molecule. Production of a fully monomeric form of ShBle required complete removal of the eight-residue N-terminal peptide, and the interaction across the now solvent-exposed hydrophobic interface of the ShBle monomer was insufficient to drive dimerization. To demonstrate efficient display of epitope tags on the ShBle protein, we displayed dual-octapeptide FLAG tags at the protein C-terminus. These additions did not interfere with protein folding or activity. The resulting ShBle scaffold was used to compare the efficiency of two commercial FLAG-specific antibodies by biosensor.  相似文献   

14.
Hydroxylamine was used to cleave the Asn-Gly peptide bond between the fusion partner and the antimicrobial peptide of interest, a magainin derivative (MSI-344). The efficiency of reaction depended on the hydroxylamine concentration, denaturant, pH, and the fused protein concentration. The optimal cleavage solution consisted of guanidine HCl as the denaturant, pH 8.1, and 6.7 mg ml–1 of fused MSI-344. This optimized cleavage solution resulted in a high yield (95% ) of MSI-344 from a cultivation of E. coli. This result suggests potential applications for using hydroxylamine to cleave basic peptides produced from fusion proteins.  相似文献   

15.
The conformational conversion of the nonpathogenic "cellular" prion isoform into a pathogenic "scrapie" protease-resistant isoform is a fundamental event in the onset of transmissible spongiform encephalopathies (TSE). During this pathogenic conversion, helix H1 and its two flanking loops of the normal prion protein are thought to undergo a conformational transition into a beta-like structure. A peptide spanning helix H1 and beta-strand S2 (residues 142-166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. This peptide in aqueous solution, in contrast to many prion fragments studied earlier (1) is highly soluble and (2) does not aggregate until the millimolar concentration range, and (3) exhibits an intrinsic propensity to a beta-hairpin-like conformation at neutral pH. We found that this peptide can also fold into a helix H1 conformation when dissolved in a TFE/PB mixture. The structures of the peptide calculated by MD showed solvent-dependent internal stabilizing forces of the structures and evidenced a higher mobility of the residues following the end of helix H1. These data suggest that the molecular rearrangement of this peptide in region 152-156, particularly in position 155, could be associated with the pathogenic conversion of the prion protein.  相似文献   

16.
17.
18.
We have constructed chimaeric genes consisting of sequences encoding the transit peptide and 4, 16, 24, 53 or 126 amino-terminal residues of the mature chlorophyll a/b binding (Cab) apoprotein fused to the Escherichia coli gene encoding beta-glucuronidase (GUS). These genes were introduced into tobacco plants and the fate of the fusion proteins they encode was analysed. Less than 1% of the total activity of fusion proteins containing the transit peptide and 4 (FP4) or 16 (FP16) amino-terminal amino acids of the mature Cab protein was associated with chloroplasts. Moreover, FP4 appears to be unprocessed. This is in striking contrast to fusion proteins containing the transit peptide and 24 (FP24), 53 (FP53) or 126 (FP126) amino-terminal residues of the mature Cab polypeptide. Approximately 98%, 96% or 75%, respectively, of the total activity of these fusion proteins was associated with purified intact chloroplasts, and protease protection experiments showed that of this, approximately 98%, 87% or 50%, respectively, was located within this organelle. Furthermore, both FP24 and FP53 appear to be processed. However, less than 10% of the activity of those fusion proteins translocated into chloroplasts was associated with thylakoid membranes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号