首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain–domain mobility without the need for external alignment media. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
This work shows that the partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ in Ca2+/calmodulin systems in solution allows the measurement of interdomain NMR pseudocontact shifts and leads to magnetic alignment of the molecule such that significant residual dipolar couplings can be measured. Both these parameters can be used to provide structural information. Species in which Tb3+ ions are bound to only one domain of calmodulin (the N-domain) and Ca2+ ions to the other (the C-domain) provide convenient systems for measuring these parameters. The nuclei in the C-domain experience the local magnetic field induced by the paramagnetic Tb3+ ions bound to the other domain at distances of over 40 Å from the Tb3+ ion, shifting the resonances for these nuclei. In addition, the Tb3+ ions bound to the N-domain of calmodulin greatly enhance the magnetic susceptibility anisotropy of the molecule so that a certain degree of alignment is produced due to interaction with the external magnetic field. In this way, dipolar couplings between nuclear spins are not averaged to zero due to solution molecular tumbling and yield dipolar coupling contributions to, for example, the one-bond 15N-1H splittings of up to 17 Hz in magnitude. The degree of alignment of the C-domain will also depend on the degree of orientational freedom of this domain with respect to the N-domain containing the Tb3+ ions. Pseudocontact shifts for NH groups and 1H-15N residual dipolar couplings for the directly bonded atoms have been measured for calmodulin itself, where the domains have orientational freedom, and for the complex of calmodulin with a target peptide from skeletal muscle myosin light chain kinase, where the domains have fixed orientations with respect to each other. The simultaneous measurements of these parameters for systems with domains in fixed orientations show great potential for the determination of the relative orientation of the domains.  相似文献   

3.
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.  相似文献   

4.
The traditional NMR‐based method for determining oligomeric protein structure usually involves distinguishing and assigning intra‐ and intersubunit NOEs. This task becomes challenging when determining symmetric homo‐dimer structures because NOE cross‐peaks from a given pair of protons occur at the same position whether intra‐ or intersubunit in origin. While there are isotope‐filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (Kd 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape‐based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed.  相似文献   

5.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

6.
Summary Two-dimensional sequence-specific1H NMR resonance assignment methodology (Wüthrich, 1986) has been applied for the first time to a 18-kDa paramagnetic hemoprotein (cyano-metAplysia Mb) to identify all the hyperfine-shifted residues. The assignment was greatly facilitated by the fact that hyperfine shifts of residues impart a strong temperature dependence to the cross peaks, which aids location and identification, and provides improved spectral dispersion, particularly in the fingerprint region. 2D COSY and TOCSY were found to be surprisingly effective in locating the complete spin connectivities of all of the hyperfine-shifted residues, with the exception of the axially coordinated His95 imidazole ring, whose proton resonances were found to exhibit severe line broadening (> 400 Hz). Conventional 1D NOE and NOESY with short mixing times, combined with paramagnetic-induced relaxation effects, led to the successful assignment of even extremely broad proton signals. Three helical stretches and two loop regions were identified as the source of all hyperfine-shifted residues: the F helical residues 3–9, the E-helix residues 6–14, the G-helix residues 5–9, the FG-loop residues 1–4 and the CD-loop residues 1–4. These segments comprise all the residues that make contact with the heme and modulate the reactivity of the prosthetic group. The sequence-specific identifications of the active-site residues revealed that the solution structure ofAplysia metMbCN is fully consistent with that observed by X-ray diffraction in single crystals for a variety of other derivatives, except for the distal Arg66 (E10), which is turned into the heme pocket, as found only in the metMbF crystal structure (Bolognesi et al., 1990). The ready identification, by their temperature sensitivity, and the complete assignments of all hyperfine-shifted residues ofAplysia metMbCN demonstrate that sequence-specific assignment can be profitably applied to paramagnetic proteins, and that it should be possible to determine the solution structures of paramagnetic proteins, at least for low-spin complexes, by using NMR techniques used for diamagnetic proteins.  相似文献   

7.
The binding ability of a protein with a metal binding tag towards Ni(2+) was investigated by longitudinal paramagnetic NMR relaxation, and the possibility of obtaining long-range structure information from the paramagnetic relaxation was explored. A protein with a well-defined solution structure (Escherichia coli thioredoxin) was used as the model system, and the peptide His-His-Pro (HHP) fused to the N-terminus of the protein was used as the metal binding tag. It was found that the tag forms a stable dimer complex with the paramagnetic Ni(2+) ion, where each metal ion binds two HHP-tagged protein molecules. However, it was also found that additional sites in the protein compete with the HHP-tag for the binding of the metal ion. These binding sites were identified as the side chain carboxylate groups of the aspartic and glutamic acid residues. Yet, the carboxylate groups bind the Ni(2+) ions considerably weaker than the HHP-tag, and only protons spatially close to the carboxylate sites are affected by the Ni(2+) ions bound to these groups. As for the protons that are unaffected by the carboxylate-bound Ni(2+) ions, it was found that the long-range distances derived from the paramagnetic relaxation enhancements are in good agreement with the solution structure of thioredoxin. Specifically, the obtained long-range paramagnetic distance constraints revealed that the dimer complex is asymmetric with different orientations of the two protein molecules relative to the Ni(2+) ion.  相似文献   

8.
The determination of the location and conformation of a natural ligand bound to a protein receptor is often a first step in the rational design of molecules that can modulate receptor function. NMR observables, including NOEs, often provide the basis for these determinations. However, when ligands are carbohydrates, interactions mediated by extensive hydrogen-bonding networks often reduce or eliminate NOEs between ligand and protein protons. In these cases, it is useful to look to other distance- and orientation-dependent observables that can constrain the geometry of ligand-protein complexes. Here we illustrate the use of paramagnetism-based NMR constraints, including pseudo-contact shifts (PCS) and field-induced residual dipolar couplings (RDCs). When a paramagnetic center can be attached to the protein, field-induced RDCs and PCS reflect only bound-state properties of the ligand, even when averages over small fractions of bound states and large fractions of free states are observed. The effects can also be observed over a long range, making it possible to attach a paramagnetic center to a remote part of the protein. The system studied here is a Galectin-3-lactose complex. A lanthanide-binding peptide showing minimal flexibility with respect to the protein was integrated into the C terminus of an expression construct for the Galectin-3-carbohydrate-binding domain. Dysprosium ion, which has a large magnetic susceptibility anisotropy, was complexed to the peptide, making it possible to observe both PCSs and field-induced RDCs for the protein and the ligand. The structure determined from these constraints shows agreement with a crystal structure of a Galectin-3-N-acetyllactosamine complex.  相似文献   

9.
In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a “cushion” between the PS‐affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS‐affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527–534, 2016  相似文献   

10.
The global fold of maltose binding protein in complex with -cyclodextrin has been determined using a CNS-based torsion angle molecular dynamics protocol involving direct refinement against dipolar couplings and carbonyl chemical shift changes that occur upon alignment. The shift changes have been included as structural restraints using a new module, CANI, that has been incorporated into CNS. Force constants and timesteps have been determined that are particularly effective in structure refinement applications involving high molecular weight proteins with small to moderate numbers of NOE restraints. Solution structures of the N- and C-domains of MBP calculated with this new protocol are within 2 Å of the X-ray conformation.  相似文献   

11.
In this communication, we suggest that transferred residual dipolar couplings (trRDCs) can be employed to restrain the structure of peptide inhibitors transiently binding to beta-amyloid fibrils. The effect is based on the spontaneous alignment of amyloid fibrils with the fibril axis parallel to the magnetic field. This alignment is transferred to the transiently binding peptide inhibitor and is reflected in the size of the trRDCs. We find that the peptide inhibitor adopts a beta-sheet conformation with the backbone N-H and C-H dipolar vectors aligned preferentially parallel and perpendicular, respectively, to the fibril axis.  相似文献   

12.
13.
The type 1 HIV presents a conical capsid formed by approximately 1500 units of the capsid protein, CA. Homodimerization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second alpha-helix. Here, we show that an N-terminal-acetylated and C-terminal-amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 microM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 microM).  相似文献   

14.
Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing structural and functional studies. However, owing to the dynamic nature of many of the smaller coiled-coil domains, crystallization for X-ray studies is very challenging. Determination of elongated structures using standard NMR approaches is inefficient and usually yields low-resolution structures due to accumulation of small errors over long distances. Here we describe a solution NMR approach based on residual dipolar couplings (RDCs) for rapid and accurate structure determination of coiled-coil dimers. Using this approach, we were able to determine the high-resolution structure of the coiled-coil domain of cGMP-dependent protein kinase Ialpha, a protein of previously unknown structure that is critical for physiological relaxation of vascular smooth muscle. This approach can be extended to solve coiled-coil structures with higher order assemblies.  相似文献   

15.
De novo folding simulations of the major pVIII coat protein from filamentous fd bacteriophage, using a newly developed implicit membrane generalized Born model and replica-exchange molecular dynamics, are presented and discussed. The quality of the predicted structures, judged by comparison of the root-mean-square deviations of a room temperature ensemble of conformations from the replica-exchange simulations and experimental structures from both solid-state NMR in lipid bilayers and solution-phase NMR on the protein in micelles, was quite good, reinforcing the general quality of the folding simulations. The transmembrane helical segment of the protein was well defined in comparison with experiment and the amphipathic helical fragment remained at the membrane/aqueous phase boundary while undergoing significant conformational flexibility due to the loop connecting the two helical segments of the protein. Additional comparisons of computed solid-state NMR properties, the 15N chemical shift and 15N-1H dipolar coupling constants, showed semi-quantitative agreement with the corresponding measurements. These findings suggest an emerging potential for the de novo investigation of integral membrane peptides and proteins and a mechanism to assist experimental approaches to the characterization and structure determination of these important systems.  相似文献   

16.
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, “High-resolution Iterative Frequency Identification of Couplings” (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C′ RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C′ vector represents a realistic “worst case analysis”. These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2–5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
A computer program (ORB) has been developed to predict 1H,13C and 15N NMR chemical shifts of previouslyunassigned proteins. The program makes use of the information contained in achemical shift database of previously assigned proteins supplemented by astatistically derived averaged chemical shift database in which the shifts arecategorized according to their residue, atom and secondary structure type[Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The predictionprocess starts with a multiple alignment of all previously assigned proteinswith the unassigned query protein. ORB uses the sequence and secondarystructure alignment program XALIGN for this task [Wishart et al. (1994)CABIOS, 10, 121–132; 687–688]. The prediction algorithm in ORB isbased on a scoring of the known shifts for each sequence. The scores dependon global sequence similarity, local sequence similarity, structuralsimilarity and residue similarity and determine how much weight one particularshift is given in the prediction process. In situations where no applicablepreviously assigned chemical shifts are available, the shifts derived from theaveraged database are used. In addition to supplying the user with predictedchemical shifts, ORB calculates a confidence value for every prediction. Theseconfidence values enable the user to judge which predictions are the mostaccurate and they are particularly useful when ORB is incorporated into acomplete autoassignment package. The usefulness of ORB was tested on threemedium-sized proteins: an interleukin-8 analog, a troponin C synthetic peptideheterodimer and cardiac troponin C. Excellent results are obtained if ORB isable to use the chemical shifts of at least one highly homologous sequence.ORB performs well as long as the sequence identity between proteins with knownchemical shifts and the new sequence is not less than 30%.  相似文献   

19.
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1H,-15N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of .5 × 10?5–7.0 × 10?5 M.  相似文献   

20.
Ma QF  Hu J  Wu WH  Liu HD  Du JT  Fu Y  Wu YW  Lei P  Zhao YF  Li YM 《Biopolymers》2006,83(1):20-31
Amyloid-beta peptide (Abeta) is the principal constituent of plaques associated with Alzheimer's disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to Abeta has been hypothesized to play an important role in the neruotoxicity of Abeta and free radical damage, and Cu2+ chelators represent a possible therapy for AD. However, many properties of copper binding to Abeta have not been elucidated clearly, and the location of copper binding sites on Abeta is also in controversy. Here we have used a range of spectroscopic techniques to characterize the coordination of Cu2+ to Abeta(1-16) in solution. Electrospray ionization mass spectrometry shows that copper binds to Abeta(1-16) at pH 6.0 and 7.0. The mode of copper binding is highly pH dependent. Circular dichroism results indicate that copper chelation causes a structural transition of Abeta(1-16). UV-visible absorption spectra suggest that three nitrogen donor ligands and one oxygen donor ligand (3N1O) in Abeta(1-16) may form a type II square-planar coordination geometry with Cu2+. By means of fluorescence spectroscopy, competition studies with glycine and L-histidine show that copper binds to Abeta(1-16) with an affinity of Ka approximately 10(7) M(-1) at pH 7.8. Besides His6, His13, and His14, Tyr10 is also involved in the coordination of Abeta(1-16) with Cu2+, which is supported by 1H NMR and UV-visible absorption spectra. Evidence for the link between Cu2+ and AD is growing, and this work has made a significant contribution to understanding the mode of copper binding to Abeta(1-16) in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号