首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B M Anner 《FEBS letters》1983,158(1):7-11
Purified Na+,K+-ATPase is treated with trypsin. The altered enzyme is then reconstituted into liposomes and the change in active and passive Na+,K+-fluxes is recorded. Trypsin treatment transforms the slow passive Na+,K+-fluxes into leaks. The leak formation is correlated with the degree of proteolysis and the associated decrease in Na+,K+-ATPase activity. The active Na+,K+-transport capacity decreases in parallel with the passive transport. It is thus proposed that the Na+,K+-ATPase molecule primarily contains unspecific transmembrane tunnels that are rendered ion-selective by transverse bars of specific length (bar model).  相似文献   

2.
An in vitro single radiation of helium-neon laser (power flux density being 2 mW/cm2 exposure--1 and 3 min) does not change the concentration of Na+ and K+, activity of Na+, K+-dependent ATPase in erythrocytes and does not affect the intensity of active Na transport through their membrane in the donor blood. The 5 min laser action decreases the level of K+ and increases that of Na+ in the erythrocytes, activates Na+, K+-ATPases and intensifies the active Na+ transport.  相似文献   

3.
The present study reports a discrepancy between the effects of vanadate on the membrane Na+-K+-ATPase and the Na+/K+ pump of the skeletal muscle. Vanadate in concentration 4 X 10(-6) mol/l which is necessary to block the enzyme Na+-K+-ATPase activity of membrane fractions failed to inhibit the electrogenic Na+/K+ pump of intact muscle cells. The effect of vanadate on the electrophysiological parameters of the muscle fibre membrane required much higher vanadate levels, but again, Na+/K+ pump was still active. Vanadate in concentrations 4 X 10(-4) and 4 X 10(-5) mol/l depolarized the membrane potential and decreased the membrane resistance [apparently in consequence of enhanced passive membrane permeability for Na+ ions]. Action potentials and the electrical excitability of the muscle fibre membrane were reduced by these vanadate concentrations.  相似文献   

4.
A study was made of the effect of ionizing radiation of 10.3 and 180.6 mC/kg on kinetic parameters of the processes of activation of Na,K-ATPase of rat brain cortex by Mg-ATP-substrate and Na+ and K+ ions. The obtained results prompt an assumption that a conformational rearrangement occurs under the effect of ionizing radiation which is not identical after relatively small and lethal radiation doses.  相似文献   

5.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

6.
A significant increase of the (Na+ + K+)-activated ATPase was found in mucosal homogenates of rat small intestine under conditions of alloxan and streptozotocin diabetes. From studies with isolated plasma membranes it has been shown that the activity changes were caused by that part of the (Na+ + K+)-activated ATPase only which is localized in the basolateral plasma membranes, whereas the enzyme activity in the brush border region remains unchanged. In connection with the enhanced capacity of ion, nonelectrolyte and water absorption in experimental diabetes, our findings support a concept of intestinal transport mechanism which suggest that the basolateral part of the (Na+ + K+)-activated ATPase is responsible for metabolic energy supply. The luminal part of the enzyme may be involved in regulation of passive Na+ influx.  相似文献   

7.
In previous studies, the two closely related strains of L5178Y (LY) mouse lymphoma cells, LY-R and LY-S, have been shown to differ in their sensitivity to UV and ionizing radiation. Thus, in comparison to strain LY-R, strain LY-S has been found to be more sensitive to the lethal effects of ionizing radiation, more resistant to the lethal effects of UV radiation, but less mutable at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus by both UV and X-radiation. In the present work, the lethal and mutagenic effects of ethyl methanesulfonate (EMS), methyl nitrosourea (MNU) and UV radiation (254 nm) were compared in the two strains. Mutability at the Na+/K+-ATPase locus as well as the HGPRT locus was determined. As previously reported, we found strain LY-S to be more resistant than strain LY-R to the lethal effects of UV radiation. In contrast, strain LY-S was more sensitive to the cytotoxic effects of the two alkylating agents. In spite of these differences in sensitivity, we found strain LY-S to be less mutable than strain LY-R by all 3 agents at the HGPRT locus. At the Na+/K+-ATPase locus, strain LY-S was also less mutable than strain LY-R by equal concentrations of EMS and UV radiation and by equitoxic concentrations of MNU. However, the difference between the strains was much more pronounced at the HGPRT locus than at the Na+/K+-ATPase locus. We have suggested that the interaction of unrepaired lesions in strain LY-S tends to cause an excess of deletions and multilocus effects, which in turn result in a locus-dependent decrease in the recovery of viable LY-S mutant cells.  相似文献   

8.
We have previously reported that anionic phospholipids (Philipson, K.D., and Nishimoto, A.Y. (1984) J. Biol. Chem. 259, 16-19) and other anionic amphiphiles (Philipson, K.D. (1984) J. Biol. Chem. 259, 13999-14002) stimulate Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. To further these studies, we have now investigated the effects of a variety of fatty acids on both Na+-Ca2+ exchange and passive Ca2+ permeability. Na+-Ca2+ exchange was stimulated by fatty acids by up to 150%. Unsaturated fatty acids were more potent than saturated fatty acids, and the stimulation was primarily due to a decrease in the apparent KM (Ca2+). There was a positive correlation between the ability of a fatty acid to stimulate Na+-Ca2+ exchange and to increase passive Ca2+ permeability. The methyl esters of fatty acids had no effects on either exchange or permeability indicating the importance of anionic charge. We conclude that the combination of local lipid disorder and anionic charge regulate Na+-Ca2+ exchange. Perturbations of the bilayer hydrophobic region and increased negative surface charge are both required for fatty acids to increase passive Ca2+ flux. Na+-Ca2+ exchange is stimulated when the ratio of membrane free fatty acid to phospholipid is about 5%. This level of fatty acid is achieved during 1 h of myocardial ischemia (Chien, K. R., Han, A., Sen, A., Buja, L. M., and Willerson, J. T. (1984) Circ. Res. 54, 313-322), indicating that ischemia could induce altered sarcolemmal Ca2+ transport due to fatty acid accumulation.  相似文献   

9.
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol liposomes by means of a freeze-thaw-sonication technique. Upon addition of MgATP, active H+ transport was observed, with a maximal rate of 2.1 mumol X mg-1 X min-1, requiring the presence of 100 mM K+ at the intravesicular site. However, in the absence of ATP an H+-K+ exchange with a maximal rate of 0.12 mumol X mg-1 X min-1 was measured, which could be inhibited by the well-known ATPase inhibitors vanadate and omeprazole, giving the first evidence of a passive K+-H+ exchange function of gastric (H+ + K+)-ATPase. An Na+-H+ exchange activity was also measured, which was fully inhibited by 1 mM amiloride. Simultaneous reconstitution of Na+/H+ antiport and (H+ + K+)-ATPase could explain why reconstituted ATPase appeared less cation-specific than the native enzyme (Rabon, E.C., Gunther, R.B., Soumarmon, A., Bassilian, B., Lewin, M.J.M. and Sachs, G. (1985) J. Biol. Chem. 260, 10200-10212).  相似文献   

10.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

11.
The localization of (Na+ + K+)-activated ATPase was investigated in isolated brush borders of rat small intestinal mucosa. The purity of the fractions has been checked by morphological and enzymatic criteria. The brush borders were found to contain a significant quantity of (Na+ + K+)-activated ATPase. Separation of isolated brush borders into their substructures suggests that (Na+ + K+)-activated ATPase is localized deeper within the brush border region than invertase. These findings are discussed in relation to active monosaccharide transport in the intestine.  相似文献   

12.
Inactivation of (Na+ + K+)-ATPase of Yoshida sarcoma cells and beef brain microsomes by phospholipase A2 and a cytotoxin P6 from snake venom has been examined in relation to their activity to degrade phospholipids. Cytotoxin P6 which was most basic and devoid of phospholipase activity was most effective in inhibiting the (Na+ + K+)-ATPase of Yoshida sarcoma cells. Phospholipase A2 from Naja naja which was most active in degrading phospholipids was least effective in inhibiting (Na+ + K+)-ATPase in Yoshida sarcoma cells or in beef brain microsomes. Addition of trace amounts of cytotoxin P6 to the phospholipase considerably enhanced the inactivation of (Na+ + K+)-ATPase. The evidence suggests that the charge of the inhibitor protein and its specific structure play an important role in the inactivation of (Na+ + K+)-ATPase.  相似文献   

13.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

14.
The ability of ATP, CTP, ITP, GTP, UTP and two synthetic ATP analogs to provide for ouabain-sensitive Na+ accumulation into proteoliposomes with a reconstituted Na+,K+-ATPase (ATP phosphohydrolase, EC 3.6.1.37) was investigated. A correlation between the proton-accepting properties of the nucleotides and their ability to provide for active transport was found. The proton-accepting properties of the substrate seem to be a necessary condition for the shift from the K-form of Na+,K+-ATPase--an immutable step in the active translocation of Na+ and K+ through the Na+ pump.  相似文献   

15.
ATP-dependent Na+ transport in cardiac sarcolemmal vesicles   总被引:3,自引:0,他引:3  
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

16.
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity.  相似文献   

17.
The Physiological Relevance of Na+-Coupled K+-Transport   总被引:4,自引:0,他引:4       下载免费PDF全文
Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role.  相似文献   

18.
(Na+/K+)ATPase liposomes of various degrees of reconstitution are formed by varying the amount of phosphatidylcholine added to the soluble (Na+/K+)ATPase before vesicles are formed by cholate removal. In the presence of ATP, the reconstituted sodium pump effectuates (Na+/K+) antiport. In the absence of ATP, the reconstituted sodium pump forms a (Na+/K+) channel. The stable plateaus formed by (1) the active Na+ transport, (2) the active K+ transport, (3) the 'passive' Na+ flux, and (4) the 'passive' K+ flux are determined in the optimally and the partially reconstituted liposomes. The activities of all four vectorial functions vary in a tightly correlated fashion, suggesting that they are mediated by the same transport-active configuration of (Na+/K+)ATPase. A transport model which includes the active and the passive (Na+/K+) fluxes mediated by the sodium pump in liposomes is outlined.  相似文献   

19.
1. Unidirectional Na+ fluxes obtained in perfused preparation of intestine and Na+ effluxes from enterocytes isolated by a specific method have been determined in the middle intestine of freshwater rainbow trout. 2. Fish were fed semi-purified diets containing 8% by wt of either cod liver oil as reference, grape seed oil or hydrogenated coconut oil which are both deficient in fatty acids (FA) of the (n-3) series essential for the trout. 3. Important modifications in the Na+ intestinal absorption were induced by these deficient diets when measured in perfused intestine. 4. Conversely, no changes were seen in the Na+ active or passive effluxed when measured in enterocytes isolated from trout fed the same diets. 5. Na+,K+-ATPase activities were also unmodified by any diet. 6. It is concluded that deprivation of essential fatty acids reduces Na+ absorption capabilities of trout intestine, an effect which is mainly located at the apical membrane of enterocytes. 7. These results strongly demonstrate that apical entry and active serosal transport are separately modified in trout intestine by EFA deficient diet. 8. Furthermore the FA of the (n-3) series are essential for the retention of functional properties of membranes and ionic permeabilities in particular.  相似文献   

20.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号