首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The life-history tactics of many Antarctic marine invertebrates suggest that the commonly observed slow rates of growth are adaptations to the pattern of food availability, and not due to low temperature per se. This implies that marine invertebrates have been able, over the course of evolutionary time, to compensate their rates of embryonic development for the effect of temperature. Data from north Atlantic copepods indicate that this is so. It is therefore suggested that the slow rates of embryonic development in many Antarctic marine invertebrates are the result of large egg size, and not the low temperature. Large, slowly developing eggs are part of a suite of tactics, often called K-strategies, which characterise many marine invertebrates in Antarctica.  相似文献   

2.
Inbreeding is a potent evolutionary force shaping the distribution of genetic variation within and among populations of plants and animals. Yet, our understanding of the forces shaping the expression and evolution of nonrandom mating in general, and inbreeding in particular, remains remarkably incomplete. Most research on plant mating systems focuses on self-fertilization and its consequences for automatic selection, inbreeding depression, purging, and reproductive assurance, whereas studies of animal mating systems have often assumed that inbreeding is rare, and that natural selection favors traits that promote outbreeding. Given that many sessile and sedentary marine invertebrates and marine macroalgae share key life history features with seed plants (e.g., low mobility, modular construction, and the release of gametes into the environment), their mating systems may be similar. Here, we show that published estimates of inbreeding coefficients (FIS) for sessile and sedentary marine organisms are similar and at least as high as noted in terrestrial seed plants. We also found that variation in FIS within invertebrates is related to the potential to self-fertilize, disperse, and choose mates. The similarity of FIS for these organismal groups suggests that inbreeding could play a larger role in the evolution of sessile and sedentary marine organisms than is currently recognized. Specifically, associations between traits of marine invertebrates and FIS suggest that inbreeding could drive evolutionary transitions between hermaphroditism and separate sexes, direct development and multiphasic life cycles, and external and internal fertilization.  相似文献   

3.

1. 1. Results from more than half a century of investigation of human adaptation to cold have been so varied that some observers have doubted whether man can adapt to cold at all.

2. 2. This paper considers what challenges to the thermoregulatory system humans experience when living and working in a cold environment (specifically the Antarctic and Subantarctic), what kinds of adaptation have been shown to develop, and what factors might have contributed to the diversity of opinion.

Author Keywords: Cold stress; polar regions; human adaptation to cold; vasomotor responses; clothing  相似文献   


4.
海洋沉积物中重金属对底栖无脊椎动物的生物有效性   总被引:1,自引:0,他引:1  
汪飞  黄小平 《生态学杂志》2012,31(1):207-214
海洋沉积物是重金属的重要贮库,而海洋底栖无脊椎动物主要从沉积物中摄取重金属,这些被摄取的重金属能够通过食物链进行传递,进而影响到人类健康。本文总结了近些年来在海洋沉积物中重金属对底栖无脊椎动物生物有效性方面的研究进展,包括海洋底栖无脊椎动物对重金属的吸收途径、沉积物地球化学性质和底栖无脊椎动物生理等生物因素对沉积物中重金属生物有效性的影响。在此基础上,展望了未来研究重点,主要包括近海富营养化对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物消化道中的物理消化过程对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物整个生活史过程中沉积物中重金属生物有效性的变化等。  相似文献   

5.
Local adaptation in host use among marine invertebrates   总被引:4,自引:0,他引:4  
The study of interactions between small invertebrates and their larger plant and animal hosts has a long tradition. One persistent theme within this literature is that spatially‐segregated populations of terrestrial and freshwater invertebrates commonly adapt to local hosts across their geographic ranges. Marine examples are rare, which leaves the impression that marine populations are less likely to adapt to locally abundant hosts and more likely to evolve generalized or phenotypically‐plastic strategies. Here, I review a short but growing list of marine invertebrates that appear to display local adaptation in host use. As expected, most of the marine examples are brooded animals with weak dispersal potential. However, some species with pelagically dispersed larvae have apparently adapted to local hosts. This surprising result is consistent with recent evidence that pelagically‐dispersed larvae are not always broadly dispersed, that strong selective pressures maintain local differences in host use, or both. The presence of host‐mediated adaptation in the sea alters predictions on how marine communities respond to disturbance, supports the notion that marine consumer‐prey interactions can coevolve, and indicates that hosts play fundamental roles in the differentiation and perhaps speciation of small marine invertebrates.  相似文献   

6.
The respiratory metabolism in larvae of the Antarctic fly, Belgica antarctica Jacobs (Diptera: Chironomidae) was investigated at Palmer Station, Anvers Island (64°46′S, 64°03′W). Oxygen consumption was linearly related to temperature from 0 to 20°C, respectively, 49 and 338 nl/mg live wt/hr. Maintenance at 0 and 10°C for 8 days had no differential effect on the metabolic rate, suggesting that larvae lack the ability for compensatory acclimation. A comparison of standard metabolism for polar and temperate chironomids revealed no elevation of metabolic rate in polar forms. However, polar species exhibited lower activation energies than temperate forms indicating that the respiratory metabolism of polar chironomids is relatively temperature independent.  相似文献   

7.
Standard metabolic rate ( R s) at 2°C of eight East Siberian cod Arctogadus borisovi , caught in West Greenland, body mass of 601.5 ± 147.6 g (mean ± s.D.), was 40.9 ± 5.9 mg O2 kg-1 h-1 and 59.0 ± 6.6mg O2 kg-1 h-1 when extrapolated to a standardized 100 g fish. R s was compared with three other Gadidae, to test the theory of metabolic cold adaptation (MCA). There was no evidence of MCA in the family.  相似文献   

8.
Marine reptiles and mammals are phylogenetically so distant from each other that their marine adaptations are rarely compared directly. We reviewed ecophysiological features in extant non-avian marine tetrapods representing 31 marine colonizations to test whether there is a common pattern across higher taxonomic groups, such as mammals and reptiles. Marine adaptations in tetrapods can be roughly divided into aquatic and haline adaptations, each of which seems to follow a sequence of three steps. In combination, these six categories exhibit five steps of marine adaptation that apply across all clades except snakes: Step M1, incipient use of marine resources; Step M2, direct feeding in the saline sea; Step M3, water balance maintenance without terrestrial fresh water; Step M4, minimized terrestrial travel and loss of terrestrial feeding; and Step M5, loss of terrestrial thermoregulation and fur/plumage. Acquisition of viviparity is not included because there is no known case where viviparity evolved after a tetrapod lineage colonized the sea. A similar sequence is found in snakes but with the haline adaptation step (Step M3) lagging behind aquatic adaptation (haline adaptation is Step S5 in snakes), most likely because their unique method of water balance maintenance requires a supply of fresh water. The same constraint may limit the maximum body size of fully marine snakes. Steps M4 and M5 in all taxa except snakes are associated with skeletal adaptations that are mechanistically linked to relevant ecophysiological features, allowing assessment of marine adaptation steps in some fossil marine tetrapods. We identified four fossil clades containing members that reached Step M5 outside of stem whales, pinnipeds, sea cows and sea turtles, namely Eosauropterygia, Ichthyosauromorpha, Mosasauroidea, and Thalattosuchia, while five other clades reached Step M4: Saurosphargidae, Placodontia, Dinocephalosaurus, Desmostylia, and Odontochelys. Clades reaching Steps M4 and M5, both extant and extinct, appear to have higher species diversity than those only reaching Steps M1 to M3, while the total number of clades is higher for the earlier steps. This suggests that marine colonizers only diversified greatly after they minimized their use of terrestrial resources, with many lineages not reaching these advanced steps. Historical patterns suggest that a clade does not advance to Steps M4 and M5 unless these steps are reached early in the evolution of the clade. Intermediate forms before a clade reached Steps M4 and M5 tend to become extinct without leaving extant descendants or fossil evidence. This makes it difficult to reconstruct the evolutionary history of marine adaptation in many clades. Clades that reached Steps M4 and M5 tend to last longer than other marine tetrapod clades, sometimes for more than 100 million years.  相似文献   

9.
海洋酸化对海洋无脊椎动物的影响研究进展   总被引:1,自引:0,他引:1  
赵信国  刘广绪 《生态学报》2015,35(7):2388-2398
人源二氧化碳(CO2)的大量排放,导致空气中CO2浓度越来越高,其中大约1/4至1/3被海洋吸收。过多CO2在海水中的溶解,除引起海水p H值降低外,还导致海水中碳酸盐平衡体系的变化,即"海洋酸化"现象。很多海洋无脊椎动物不但在海洋生态系统中发挥重要作用,还是重要的水产养殖种,因此具有重要的生态与经济价值。由于海洋无脊椎动物的生活史在海水中完成,因此海洋环境的变化极易对其造成影响。大量研究已证实海洋酸化能对多种海洋无脊椎动物的受精、发育、生物钙化、基因表达等生命活动产生显著影响。综述了近年来海洋酸化对海洋无脊椎动物影响研究的相关报道,归纳了其对海洋无脊椎动物不同生命活动的影响,分析了其生态学效应,探讨了现有研究在方法创新、内容拓展以及机理分析等方面存在的局限与不足,并展望了海洋酸化对海洋无脊椎动物影响研究的发展方向。  相似文献   

10.
极区低温海洋细菌及其产酶情况的初步研究   总被引:13,自引:0,他引:13  
曾胤新  陈波 《生物技术》2002,12(1):10-12
通过对大量极区低温海洋菌株的分离、筛选及进一步的生理生化特性研究,获得1株最适生长温度为15℃、生长温度上限为35℃、产蛋白酶及多种多糖水解酶的耐冷细菌。该菌过氧化氢酶为阳性,具有弱嗜盐性;蔗糖、可溶性淀粉是有利于菌株生长的碳源物质,而酵母膏则是效果最佳的氮源物质。该菌株所产蛋白酶的最适作用温度为55℃,而淀粉酶、琼脂酶及纤维素酶的最适作用温度皆为35℃。  相似文献   

11.
地球生物圈75%以上的环境温度常年低于5℃,在这种低温环境中栖息着多种适应低温的微生物。在长期进化过程中低温微生物从细胞到分子水平形成一套独特的低温环境适应机制,而通过增加细胞膜膜脂中多不饱和脂肪酸含量来维持低温条件下最佳的细胞膜流动性是其中的一种。从多不饱和脂肪酸对微生物低温生长、细胞膜流动性细胞膜蛋白的组成和表达水平的影响来探讨多不饱和脂肪酸与微生物低温适应性的关系,总结多不饱和脂肪酸低温合成调节机制的研究进展,为相关的基础和应用开发研究提供参考。  相似文献   

12.
Previous studies in physical anthropology, using superficial facial features, show that the relationship between human facial morphology and climate is not clear. An alternate approach to the problem is the investigation of the deeper facio-anatomical structures (i.e., cranial sinuses and/or foramina) in relation to climatic variables. The present investigation statistically analyses the relationship between climatic conditions (wind chill equivalent temperatures and absolute humidities) and the occurrence and size of frontal sinuses in 153 Eskimo crania. Conditional results from tests of significance of differences and correlation suggest a relationship between low wind chill equivalent temperatures and small frontal sinus surface areas. These results are interpreted in light of cranial sinus function and environmental physiology.  相似文献   

13.
The activities of enzymes involved in the consecutive phosphorylation of thymidine were revealed in the gonad extracts of marine invertebrates. Along with thymidine kinase activity, thymidilate kinase activity was revealed in all the studied species; however, the specific activities of nucleoside and nucleotide kinases varied in different species of mollusks, sea stars and sea urchins. Thymidine and thymidilate kinases were isolated from the gonads of the scallop Mizuhopecten yessoensis and some of their enzymat properties were studied. The thymidine kinase of M. yessoensis catalyzed the phosphorylation of thymidine and deoxycytidine at a lesser rate, but didn’s use purine ribo-and deoxyribonucleosides or pyrimidine ribonucleosides as phosphate acceptors. The thymidilate kinase carried out both TMP and dCMP phosphorylation. As well as ATP, the enzymes of M. yessoensis were also able to use dATP, dGTP, GTP, UTP and CTP as donors of phosphate groups. The thymidine kinase activity was inhibited by TMP, TTP and dCTP.  相似文献   

14.
Specificities of actions of fucoidanases from the marine microorganism Pseudoalteromonas citrea KMM 3296 and the marine mollusk Littorina kurila were studied. The enzymes possess similar specificities and catalyze the cleavage of accessible α-(1→3)-fucoside bonds in fucoidans with highly sulfated α-(1→4; 1→3)-L-fucooligosaccharides. A high degree of sulfation of the fucose residues in fucoidans makes α-(1→3)-L-fucoside bonds inaccessible for the action of the studied enzymes. The maximum degree of cleavage of fucoidan was achieved by the fucoidanase from the marine bacterium Pseudoalteromonas citrea KMM 3296.  相似文献   

15.
Knowledge about the structural features underlying cold adaptation is important for designing enzymes of different industrial relevance. Vibriolysin from Antarctic bacterium strain 643 (VAB) is at present the only enzyme of the thermolysin family from an organism that thrive in extremely cold climate. In this study comparative sequence-structure analysis and molecular dynamics (MD) simulations were used to reveal the molecular features of cold adaptation of VAB. Amino acid sequence analysis of 44 thermolysin enzymes showed that VAB compared to the other enzymes has: (1) fewer arginines, (2) a lower Arg/(Lys + Arg) ratio, (3) a lower fraction of large aliphatic side chains, expressed by the (Ile + Leu)/(Ile + Leu + Val) ratio, (4) more methionines, (5) more serines, and (6) more of the thermolabile amino acid asparagine. A model of the catalytic domain of VAB was constructed based on homology with pseudolysin. MD simulations for 3 ns of VAB, pseudolysin, and thermolysin supported the assumption that cold-adapted enzymes have a more flexible three-dimensional (3D) structure than their thermophilic and mesophilic counterparts, especially in some loop regions. The structural analysis indicated that VAB has fewer intramolecular cation-pi electron interactions and fewer hydrogen bonds than its mesophilic (pseudolysin) and thermophilic (thermolysin) counterparts. Lysine is the dominating cationic amino acids involved in salt bridges in VAB, while arginine is dominating in thermolysin and pseudolysin. VAB has a greater volume of inaccessible cavities than pseudolysin and thermolysin. The electrostatic potentials on the surface of the catalytic domain were also more negative for VAB than for thermolysin and pseudolysin. Thus, the MD simulations, the structural patterns, and the amino acid composition of VAB relative to other enzymes of the thermolysin family suggest that VAB possesses the biophysical properties generally following adaptation to cold climate.  相似文献   

16.
17.
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow‐water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow‐water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow‐water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow‐water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic‐rate‐dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow‐water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern.  相似文献   

18.
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.  相似文献   

19.
Central carbohydrate metabolism of Arabidopsis thaliana is known to play a crucial role during cold acclimation and the acquisition of freezing tolerance. During cold exposure, many carbohydrates accumulate and a new metabolic homeostasis evolves. In the present study, we analyse the diurnal dynamics of carbohydrate homeostasis before and after cold exposure in three natural accessions showing distinct cold acclimation capacity. Diurnal dynamics of soluble carbohydrates were found to be significantly different in cold-sensitive and cold-tolerant accessions. Although experimentally determined maximum turnover rates for sucrose phosphate synthase in cold-acclimated leaves were higher for cold-tolerant accessions, model simulations of diurnal carbohydrate dynamics revealed similar fluxes. This implied a significantly higher capacity for sucrose synthesis in cold-tolerant than cold-sensitive accessions. Based on this implication resulting from mathematical model simulation, a critical temperature for sucrose synthesis was calculated using the Arrhenius equation and experimentally validated in the cold-sensitive accession C24. At the critical temperature suggested by model simulation, an imbalance in photosynthetic carbon fixation ultimately resulting in oxidative stress was observed. It is therefore concluded that metabolic capacities at least in part determine the ability of accessions of Arabidopsis thaliana to cope with changes in environmental conditions.  相似文献   

20.
Investigating how environmental features shape the genetic structure of populations is crucial for understanding how they are potentially adapted to their habitats, as well as for sound management. In this study, we assessed the relative importance of spatial distribution, ocean currents and sea surface temperature (SST) on patterns of putatively neutral and adaptive genetic variation among American lobster from 19 locations using population differentiation (PD) approaches combined with environmental association (EA) analyses. First, PD approaches (using bayescan , arlequin and outflank ) found 28 outlier SNPs putatively under divergent selection and 9770 neutral SNPs in common. Redundancy analysis revealed that spatial distribution, ocean current‐mediated larval connectivity and SST explained 31.7% of the neutral genetic differentiation, with ocean currents driving the majority of this relationship (21.0%). After removing the influence of spatial distribution, no SST were significant for putatively neutral genetic variation whereas minimum annual SST still had a significant impact and explained 8.1% of the putatively adaptive genetic variation. Second, EA analyses (using Pearson correlation tests, bayescenv and lfmm ) jointly identified seven SNPs as candidates for thermal adaptation. Covariation at these SNPs was assessed with a spatial multivariate analysis that highlighted a significant temperature association, after accounting for the influence of spatial distribution. Among the 505 candidate SNPs detected by at least one of the three approaches, we discovered three polymorphisms located in genes previously shown to play a role in thermal adaptation. Our results have implications for the management of the American lobster and provide a foundation on which to predict how this species will cope with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号