首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of NAD+-dependent DNA ligase from Thermus filiformis (Tfi) revealed that the protein comprised four structural domains. In order to investigate the biochemical activities of these domains, seven deletion mutants were constructed from the Tfi DNA ligase. The mutants Tfi-M1 (residues 1-581), Tfi-M2 (residues 1-448), Tfi-M3 (residues 1-403) and Tfi-M4 (residues 1-314) showed the same adenylation activity as that of wild-type. This result indicates that only the adenylation domain (domain 1) is essential for the formation of enzyme-AMP complex. It was found that the zinc finger and helix-hairpin-helix (HhH) motif domain (domain 3) and the oligomer binding (OB)-fold domain (domain 2) are important for the formation of enzyme-DNA complex. The mutant Tfi-M1 alone showed the activities for in vitro nick-closing and in vivo complementation in Escherichia coli as those of wild-type. These results indicate that the BRCT domain (domain 4) of Tfi DNA ligase is not essential for the enzyme activity. The enzymatic properties of Tfi-M1 mutant (deleted the BRCT domain) were slightly different from those of wild-type and the nick-closing activity of Tfi-M1 mutant was approximately 50% compared with that of wild-type.  相似文献   

2.
A Staphylococcus aureus mutant conditionally defective in DNA ligase was identified by isolation of complementing plasmid clones that encode the S. aureus ligA gene. Orthologues of the putative S. aureus NAD(+)-dependent DNA ligase could be identified in the genomes of Bacillus stearothermophilus and other gram-positive bacteria and confirmed the presence of four conserved amino acid motifs, including motif I, KXDG with lysine 112, which is believed to be the proposed site of adenylation. DNA sequence comparison of the ligA genes from wild type and temperature-sensitive S. aureus strain NT64 identified a single base alteration that is predicted to result in the amino acid substitution E46G. The S. aureus ligA gene was cloned and overexpressed in Escherichia coli, and the enzyme was purified to near homogeneity. NAD(+)-dependent DNA ligase activity was demonstrated with the purified enzyme by measuring ligation of (32)P-labeled 30-mer and 29-mer oligonucleotides annealed to a complementary strand of DNA. Limited proteolysis of purified S. aureus DNA ligase by thermolysin produced products with apparent molecular masses of 40, 22, and 21 kDa. The fragments were purified and characterized by N-terminal sequencing and mass analysis. The N-terminal fragment (40 kDa) was found to be fully adenylated. A fragment from residues 1 to 315 was expressed as a His-tagged fusion in E. coli and purified for functional analysis. Following deadenylation with nicotinamide mononucleotide, the purified fragment could self-adenylate but lacked detectable DNA binding activity. The 21- and 22-kDa C-terminal fragments, which lacked the last 76 amino acids of the DNA ligase, had no adenylation activity or DNA binding activity. The intact 30-kDa C terminus of the S. aureus LigA protein expressed in E. coli did demonstrate DNA binding activity. These observations suggest that, as in the case with the NAD(+)-dependent DNA ligase from B. stearothermophilus, two independent functional domains exist in S. aureus DNA ligase, consisting of separate adenylation and DNA binding activities. They also demonstrate a role for the extreme C terminus of the ligase in DNA binding. As there is much evidence to suggest that DNA ligase is essential for bacterial survival, its discovery in the important human pathogen S. aureus indicates its potential as a broad-spectrum antibacterial target for the identification of novel antibiotics.  相似文献   

3.
Feng H  Parker JM  Lu J  Cao W 《Biochemistry》2004,43(39):12648-12659
DNA strand joining entails three consecutive steps: enzyme adenylation to form AMP-ligase, substrate adenylation to form AMP-DNA, and nick closure. In this study, we investigate the effects on ligation steps by deletion and site-directed mutagenesis of the BRCA1 C-terminal (BRCT) domain using NAD(+)-dependent DNA ligase from Thermus species AK16D. Deletion of the BRCT domain resulted in substantial loss of ligation activity, but the mutant was still able to form an AMP-ligase intermediate, suggesting that the defects caused by deletion of the entire BRCT domain occur primarily at steps after enzyme adenylation. The lack of AMP-DNA accumulation by the domain deletion mutant as compared to the wild-type ligase indicates that the BRCT domain plays a role in the substrate adenylation step. Gel mobility shift analysis suggests that the BRCT domain and helix-hairpin-helix subdomain play a role in DNA binding. Similar to the BRCT domain deletion mutant, the G617I mutant showed a low ligation activity and lack of accumulation of AMP-DNA intermediate. However, the G617I mutant was only weakly adenylated, suggesting that a point mutation in the BRCT domain could also affect the enzyme adenylation step. The significant reduction of ligation activity by G634I appears to be attributable to a defect at the substrate adenylation step. The greater ligation of mismatched substrates by G638I is accountable by accelerated conversion of the AMP-DNA intermediate to a ligation product at the final nick closure step. The mutational effects of the BRCT domain on ligation steps in relation to protein-DNA and potential protein-protein interactions are discussed.  相似文献   

4.
DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.  相似文献   

5.
J Luo  F Barany 《Nucleic acids research》1996,24(15):3079-3085
DNA ligases play a pivotal role in DNA replication, repair and recombination. Reactions catalyzed by DNA ligases consist of three steps: adenylation of the ligase in the presence of ATP or NAD+, transferring the adenylate moiety to the 5'-phosphate of the nicked DNA substrate (deadenylation) and sealing the nick through the formation of a phosphodiester bond. Thermus thermophilus HB8 DNA ligase (Tth DNA ligase) differs from mesophilic ATP-dependent DNA ligases in three ways: (i) it is NAD+ dependent; (ii) its optimal temperature is 65 instead of 37 degrees C; (iii) it has higher fidelity than T4 DNA ligase. In order to understand the structural basis underlying the reaction mechanism of Tth DNA ligase, we performed site-directed mutagenesis studies on nine selected amino acid residues that are highly conserved in bacterial DNA ligases. Examination of these site-specific mutants revealed that: residue K118 plays an essential role in the adenylation step; residue D120 may facilitate the deadenylation step; residues G339 and C433 may be involved in formation of the phosphodiester bond. This evidence indicates that a previously identified KXDG motif for adenylation of eukaryotic DNA ligases [Tomkinson, A.E., Totty, N.F., Ginsburg, M. and Lindahl, T. (1991) Proc. Natl. Acad. Sci. USA, 88, 400-404] is also the adenylation site for NAD+-dependent bacterial DNA ligases. In a companion paper, we demonstrate that mutations at a different Lys residue, K294, may modulate the fidelity of Tth DNA ligase.  相似文献   

6.
Mycobacterium tuberculosis codes for an essential NAD+-dependent DNA ligase (MtuLigA) which is a novel, validated, and attractive drug target. We created mutants of the enzyme by systematically deleting domains from the C-terminal end of the enzyme to probe for their functional roles in the DNA nick joining reaction. Deletion of just the BRCT domain from MtuLigA resulted in total loss of activity in in vitro assays. However, the mutant could form an AMP-ligase intermediate that suggests that the defects caused by deletion of the BRCT domain occur primarily at steps after enzyme adenylation. Furthermore, genetic complementation experiments using a LigA deficient E. coli strain demonstrates that the BRCT domain of MtuLigA is necessary for bacterial survival in contrast to E. coli and T. filiformis LigA, respectively. We also report the identification, through virtual screening, of a novel N-substituted tetracyclic indole that competes with NAD+ and inhibits the enzyme with IC50 in the low muM range. It exhibits approximately 15-fold better affinity for MtuLigA compared to human DNA ligase I. In vivo assays using LigA deficient S. typhimurium and E. coli strains suggest that the observed antibacterial activity of the inhibitor arises from specific inhibition of LigA over ATP ligases in the bacteria. In silico ligand-docking studies suggest that the exquisite specificity of the inhibitor arises on account of its mimicking the interactions of NAD+ with MtuLigA. An analysis of conserved water in the binding site of the enzyme suggests strategies for synthesis of improved inhibitors with better specificity and potency.  相似文献   

7.
BACKGROUND: DNA ligases catalyse phosphodiester bond formation between adjacent bases in nicked DNA, thereby sealing the nick. A key step in the catalytic mechanism is the formation of an adenylated DNA intermediate. The adenyl group is derived from either ATP (in eucaryotes and archaea) or NAD+4 (in bacteria). This difference in cofactor specificity suggests that DNA ligase may be a useful antibiotic target. RESULTS: The crystal structure of the adenylation domain of the NAD+-dependent DNA ligase from Bacillus stearothermophilus has been determined at 2.8 A resolution. Despite a complete lack of detectable sequence similarity, the fold of the central core of this domain shares homology with the equivalent region of ATP-dependent DNA ligases, providing strong evidence for the location of the NAD+-binding site. CONCLUSIONS: Comparison of the structure of the NAD+4-dependent DNA ligase with that of ATP-dependent ligases and mRNA-capping enzymes demonstrates the manifold utilisation of a conserved nucleotidyltransferase domain within this family of enzymes. Whilst this conserved core domain retains a common mode of nucleotide binding and activation, it is the additional domains at the N terminus and/or the C terminus that provide the alternative specificities and functionalities in the different members of this enzyme superfamily.  相似文献   

8.
9.
DNA ligases are the enzymes essential for DNA replication, repair and recombination in all organisms. The bacterial DNA ligases involved in DNA replication require NAD(+) for activity, but eukaryotic and viral DNA ligases require ATP. Because of their essential nature, unique structures and widespread existence in nature, bacterial DNA ligases represent a class of valuable targets for identifying novel and selective antibacterial agents. In this study, we cloned and expressed the ligA gene from Streptococcus pneumoniae, and characterized this ligA-encoded NAD(+)-dependent DNA ligase. We then screened small molecule chemical libraries using a biochemical assay and identified a new small molecule with a structure of 2,4-diamino-7-dimethylamino-pyrimido[4,5-d]pyrimidine. We show that this small molecule is a specific inhibitor of bacterial NAD(+)-dependent DNA ligases. Biochemical studies show that this molecule inhibits NAD(+)-dependent DNA ligases, but not ATP-dependent enzymes. The molecule inhibits NAD(+)-dependent DNA ligases competitively with respect to NAD(+) and specifically inhibits enzyme adenylation, but not DNA adenylation or ligation. Labeling studies establish that this molecule inhibits the incorporation of thymidine into DNA and that overexpression of DNA ligase in the cell abolishes this inhibition. Finally, microbiological studies show that this molecule exhibits a broad spectrum of antibacterial activity. Together, this study shows that this small molecule inhibitor identified is specific to bacterial NAD(+)-dependent DNA ligases, exhibits a broad spectrum of antibacterial activities, and has the potential to be developed into an antibacterial agent.  相似文献   

10.
DNA ligase is an enzyme important for DNA repair and replication. Eukaryotic genomes encode ligases requiring ATP as the cofactor; bacterial genomes encode NAD(+)-dependent ligase. This difference in substrate specificities and the essentiality of NAD(+)-dependent ligase for bacterial survival make NAD(+)-dependent ligase a good target for designing highly specific anti-infectives. Any such structure-guided effort would require the knowledge of the precise mechanism of NAD+ recognition by the enzyme. We report the principles of NAD+ recognition by presenting the synthesis of NAD+ from nicotinamide mononucleotide (NMN) and AMP, catalyzed by Enterococcus faecalis ligase within the crystal lattice. Unprecedented conformational change, required to reorient the two subdomains of the protein for the condensation to occur and to recognize NAD+, is captured in two structures obtained using the same protein crystal. Structural data and sequence analysis presented here confirms and extends prior functional studies of the ligase adenylation reaction.  相似文献   

11.
T4 DNA ligase is an Mg2+-dependent and ATP-dependent enzyme that seals DNA nicks in three steps: it covalently binds AMP, transadenylates the nick phosphate, and catalyses formation of the phosphodiester bond releasing AMP. In this kinetic study, we further detail the reaction mechanism, showing that the overall ligation reaction is a superimposition of two parallel processes: a 'processive' ligation, in which the enzyme transadenylates and seals the nick without dissociating from dsDNA, and a 'nonprocessive' ligation, in which the enzyme takes part in the abortive adenylation cycle (covalent binding of AMP, transadenylation of the nick, and dissociation). At low concentrations of ATP (<10 microM) and when the DNA nick is sealed with mismatching base pairs (e.g. five adjacent), this superimposition resolves into two kinetic phases, a burst ligation (approximately 0.2 min(-1)) and a subsequent slow ligation (approximately 2x10(-3) min(-1)). The relative rate and extent of each phase depend on the concentrations of ATP and Mg2+. The activation energies of self-adenylation (16.2 kcal.mol(-1)), transadenylation of the nick (0.9 kcal.mol(-1)), and nick-sealing (16.3-18.8 kcal.mol(-1)) were determined for several DNA substrates. The low activation energy of transadenylation implies that the transfer of AMP to the terminal DNA phosphate is a spontaneous reaction, and that the T4 DNA ligase-AMP complex is a high-energy intermediate. To summarize current findings in the DNA ligation field, we delineate a kinetic mechanism of T4 DNA ligase catalysis.  相似文献   

12.
A DNA ligase gene from the hyperthermophilic bacterium Aquifex pyrophilus (Ap) was cloned and sequenced. An open reading frame of 2,157 bp that codes for a 82-kDa protein showed 40%-60% homology with a series of NAD+-dependent DNA ligases from different organisms. The recombinant enzyme Ap DNA ligase expressed in Escherichia coli was purified to homogeneity and characterized. The activity of Ap DNA ligase gradually increased in proportion to the concentration of monovalent salt up to 200 mM NaCl, 150 mM KCl, 200 mM NH4Cl, and 350 mM potassium glutamate. The optimum temperature and pH of Ap DNA ligase were greater than 65 degrees C and 8.0-8.6, respectively, for nick-closing activity. More than 75% of the ligation activity was retained after incubation at 95 degrees C for 60 min, whereas the half-lives of Thermus aquaticus and Escherichia coli DNA ligases at 95 degrees C were < or =15 min and 5 min, respectively. Thermostable Ap DNA ligase was applied to repeat expansion detection (RED) and could be a useful enzyme in DNA diagnostics.  相似文献   

13.
ATP-dependent DNA ligases are essential enzymes in both DNA replication and DNA repair processes. Here we report a functional characterization of the T4 DNA ligase. One N-terminal and two C-terminal deletion mutants were expressed in Escherichia coli as histidine- tagged proteins. An additional mutant bore a substitution of Lys159 in the active site that abolished ATP binding. All the proteins were tested in biochemical assays for ATP-dependent self-adenylation, DNA binding, nick joining, blunt-end ligation and AMP- dependent DNA relaxation. From this analysis we conclude that binding to DNA is mediated by sequences at both protein ends and plays a key role in the reaction. The enzyme establishes two different complexes with DNA: (i) a transient complex (T.complex) involving the adenylated enzyme; (ii) a stable complex (S.complex) requiring the deadenylated T4 DNA ligase. The formation of an S. complex seems to be relevant during both blunt-end ligation and DNA relaxation. Moreover the inactive His-K159L substitution mutant, although unable to self-adenylate, still possesses AMP-dependent DNA nicking activity.  相似文献   

14.
Pseudomonas aeruginosa encodes two putative DNA ligases: a classical NAD(+)-dependent DNA ligase (LigA) plus an ATP-dependent DNA ligase (LigD). LigD exemplifies a family of bacterial proteins that consist of a ligase domain fused to flanking domains that resemble nucleases and/or polymerases. Here we purify LigD and show that it possesses an intrinsic polymerase function resident within an autonomous C-terminal polymerase domain, LigD-(533-840), that flanks an autonomous DNA ligase domain, LigD-(188-527). Native LigD and the polymerase domain are both monomeric proteins. The polymerase activity is manifest in three ways: (i) non-templated nucleotide addition to a blunt-ended duplex DNA primer; (ii) non-templated addition to a single-stranded DNA primer; and (iii) templated extension of a 5'-tailed duplex DNA primer-template. The divalent cation cofactor requirement for non-templated and templated polymerase activity is satisfied by manganese or cobalt. rNTPs are preferred over dNTPs as substrates for non-templated blunt-end addition, which typically entails the incorporation of only 1 or 2 nucleotides at the primer terminus. Templated dNMP addition to a 5'-tailed substrate is efficient with respect to dNTP utilization; the primer is elongated to the end of the template strand and is then further extended with a non-templated nucleotide. The polymerase activity is abolished by alanine substitution for two aspartates (Asp-669 and Asp-671) within the putative metal-binding site. We speculate that polymerase activity is relevant to LigD function in nonhomologous end-joining.  相似文献   

15.
In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD(+)-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD(+)-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced "open-closure" process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates.  相似文献   

16.
DNA ligase catalyzes the closure of single-strand nicks in double-stranded DNA that arise during replication and recombination. Inhibition of bacterial ligase is expected to cause chromosome degradation and cell death, making it an attractive target for new antibacterials. The prototypical bacterial ligase couples the hydrolysis of NAD(+) to phosphodiester bond formation between an adjacent 3'OH and 5'-terminal phosphate of nicked duplex DNA. The first step is the reversible formation of a ligase-adenylate from the reaction between apoenzyme and NAD(+). Inhibitors that compete with NAD(+) are expected to be bacterial specific because eukaryotic DNA ligases use ATP and differ in the sequence composition of their adenylation domain. We report here a high-throughput assay that measures the adenylation reaction specifically by monitoring ligase-AMP formation via scintillation proximity technologies. Escherichia coli DNA ligase was biotinylated in vivo; after reaction with radiolabeled NAD(+), ligase-[(3)H]AMP could be captured onto the streptavidin-coated surface of the solid scintillant. The method was ideal for high-throughput screening because it required minimal manipulations and generated a robust signal with minimal scatter. Certain adenosine analogs were found to inhibit the adenylation assay and had similar potency of inhibition in a DNA ligation assay.  相似文献   

17.
DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, N(n)-bis-(5-deoxy-alpha-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the microM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.  相似文献   

18.
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).  相似文献   

19.
The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.  相似文献   

20.
The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+)-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+)-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+)-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号