首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathyroid hormone-related protein (PTHrP), expressed in a range of tumors, has endocrine, autocrine/paracrine, and intracrine actions, some of which relate to its ability to localize in the nucleus. Here we show for the first time that extracellularly added human PTHrP (amino acids 1-108) can be taken up specifically by receptor-expressing UMR106.01 osteogenic sarcoma cells and accumulate to quite high levels in the nucleus and nucleolus within 40 min. Quantitation of recognition by the nuclear localization sequence (NLS)-binding importin subunits indicated that in contrast to proteins containing conventional NLSs, PTHrP is recognized exclusively by importin beta and not by importin alpha. The sequence of PTHrP responsible for binding was mapped to amino acids 66-94, which includes an SV40 large tumor-antigen NLS-like sequence, although sequence determinants amino-terminal to this region were also necessary for high affinity binding (apparent dissociation constant of approximately 2 nM for importin beta). Nuclear import of PTHrP was assessed in vitro using purified components, demonstrating that importin beta, together with the GTP-binding protein Ran, was able to mediate efficient nuclear accumulation in the absence of importin alpha, whereas the addition of nuclear transport factor NTF2 reduced transport. The polypeptide ligand PTHrP thus appears to be accumulated in the nucleus/nucleolus through a novel, NLS-dependent nuclear import pathway independent of importin alpha and perhaps also of NTF2.  相似文献   

2.
Parathyroid hormone-related protein (PTHrP) was first discovered as the factor causing hypercalcaemia produced by solid tumours frequently associated with the head and neck, breast, lung and kidney. The homology of its amino-terminus to parathyroid hormone (PTH; eight of the first 13 residues are identical), enables it to share the same receptor and perform similar biological functions to PTH. The sequences of PTHrP C-terminal to its PTH-like region confer functions such as transplacental calcium transport, renal bicarbonate excretion and in vitro osteoclast inhibition. Recent findings have shown that PTHrP is a nuclear/nucleolar protein in certain tissues and that this localization is cell cycle-regulated, mediated by the middle portion of the molecule, and involves the nuclear import receptor importin beta1. The present review discusses what is known about the pathway by which PTHrP localizes to the nucleus/nucleolus and the putative roles it may have there.  相似文献   

3.
The hormone-related protein PTHrP travels from the cytosol to the nucleus by binding to the transport factor importin . Remarkably, the site of recognition of PTHrP is the N-terminal half of importin , which also has Ran-binding and nucleoporin-binding capabilities and is, therefore, sufficient by itself to function in PTHrP nuclear import.  相似文献   

4.
Produced by various types of solid tumors, parathyroid hormone-related protein (PTHrP) is the causative agent of humoral hypercalcemia of malignancy. The similarity of PTHrP's amino-terminus to that of parathyroid hormone enables it to share some of the latter's signalling properties, but its carboxy-terminus confers distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. PTHrP nuclear import occurs via a novel importin beta1-mediated pathway. The present study uses several different direct binding assays to map the interaction of PTHrP with importin beta using a series of alanine mutated PTHrP peptides and truncated human importin beta1 derivatives. Our results indicate that PTHrP amino acids 83-93 (KTPGKKKKGK) are absolutely essential for importin beta1 recognition with residues 71-82 (TNKVETYKEQPL) additionally required for high affinity binding; residues 380-643 of importin beta1 are required for the interaction. Binding of importin beta1 to PTHrP is reduced in the presence of the GTP-bound but not GDP-bound form of the guanine nucleotide binding protein Ran, consistent with the idea that RanGTP binding to importin beta is involved in the release of PTHrP into the nucleus following translocation across the nuclear envelope. This study represents the first detailed examination of a modular, non-arginine-rich importin beta1-recognized nuclear targeting signal.  相似文献   

5.
Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82-108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66-108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation.  相似文献   

6.
Even though the Duchenne muscular dystrophy (DMD) gene product Dystrophin Dp71d is involved in various key cellular processes through its role as a scaffold for structural and signalling proteins at the plasma membrane as well as the nuclear envelope, its subcellular trafficking is poorly understood. Here we map the nuclear import and export signals of Dp71d by truncation and point mutant analysis, showing for the first time that Dp71d shuttles between the nucleus and cytoplasm mediated by the conventional nuclear transporters, importin (IMP) α/β and the exportin CRM1. Binding was confirmed in cells using pull-downs, while in vitro binding assays showed direct, high affinity (apparent dissociation coefficient of c. 0.25 nM) binding of Dp71d to IMPα/β. Interestingly, treatment of cells with the microtubule depolymerizing reagent nocodazole or the dynein inhibitor EHNA both decreased Dp71d nuclear localization, implying that Dp71d nuclear import may be facilitated by microtubules and the motor protein dynein. The role of Dp71d in the nucleus appears to relate in part to interaction with the nuclear envelope protein emerin, and maintenance of the integrity of the nuclear architecture. The clear implication is that Dp71d's previously unrecognised nuclear transport properties likely contribute to various, important physiological roles.  相似文献   

7.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

8.
H M Smith  N V Raikhel 《The Plant cell》1998,10(11):1791-1799
Importin alpha is the nuclear localization signal (NLS) receptor that is involved in the nuclear import of proteins containing basic NLSs. Using importin alpha as a tool, we were interested in determining whether the cytoskeleton could function in the transport of NLS-containing proteins from the cytoplasm to the nucleus. Double-labeling immunofluorescence studies showed that most of the cytoplasmic importin alpha coaligned with microtubules and microfilaments in tobacco protoplasts. Treatment of tobacco protoplasts with microtubule- or microfilament-depolymerizing agents disrupted the strands of importin alpha in the cytoplasm, whereas a microtubule-stabilizing agent had no effect. Biochemical analysis showed that importin alpha associated with microtubules and microfilaments in vitro in an NLS-dependent manner. The interaction of importin alpha with the cytoskeleton could be an essential element of protein transport from the cytoplasm to the nucleus in vivo.  相似文献   

9.
The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin alpha, and is displaced from importin alpha by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin alpha. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.  相似文献   

10.
Ribosome biogenesis requires the nuclear translocation of ribosomal proteins from their site of synthesis in the cytoplasm to the nucleus. Analyses of the import mechanisms have revealed that most ribosomal proteins can be delivered to the nucleus by multiple transport receptors (karyopherins or importins). We now provide evidence that ribosomal protein L12 (rpL12) is distinguished from the bulk of ribosomal proteins because it accesses the importin 11 pathway as a major route into the nucleus. rpL12 specifically and directly interacted with importin 11 in vitro and in vivo. Both rpL12 binding to and import by importin 11 were inhibited by another importin 11 substrate, UbcM2, indicating that these two cargoes may bind overlapping sites on the transport receptor. In contrast, the import of rpL23a, a ribosomal protein that uses the general ribosomal protein import system, was not competed by UbcM2, and in an in vitro binding assay, importin 11 did not bind to the nuclear localization signal of rpL23a. Furthermore, in a transient transfection assay, the nuclear accumulation of rpL12 was increased by coexpressed importin 11, but not by other importins. These data are consistent with importin 11 being a mediator of rpL12 nuclear import. Taken together, these results indicate that rpL12 uses a distinct nuclear import pathway that may contribute to a mechanism for regulating ribosome synthesis and/or maturation.  相似文献   

11.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

12.
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.  相似文献   

13.
Blower MD  Nachury M  Heald R  Weis K 《Cell》2005,121(2):223-234
Centrosome-independent microtubule polymerization around chromosomes has been shown to require a local gradient of RanGTP, which discharges mitotic cargoes from the nuclear import receptor importin beta. Here, we have used an activity-based assay in Xenopus egg extracts to purify the mRNA export protein Rae1 as a spindle assembly factor regulated by this pathway. Rae1 is a microtubule-associated protein that binds directly to importin beta. Depletion of Rae1 from extracts or cells severely inhibits mitotic spindle assembly. A purified Rae1 complex stabilizes microtubules in egg extracts in a RanGTP/importin beta-regulated manner. Interestingly, Rae1 exists in a large ribonucleoprotein complex, which requires RNA for its activity to control microtubule dynamics in vitro. Furthermore, we provide evidence that RNA associates with the mitotic spindle and that it plays a direct, translation-independent role in spindle assembly. Our studies reveal an unexpected function for RNA in spindle morphogenesis.  相似文献   

14.
15.
A classical nuclear localization signal (NLS)-containing protein is transported into the nucleus via the formation of a NLS-substrate/importin alpha/beta complex. In this study, we found that importin alpha migrated into the nucleus without the addition of importin beta, Ran or any other soluble factors in an in vitro transport assay. A mutant importin alpha lacking the importin beta-binding domain efficiently entered the nucleus. Competition experiments showed that this import pathway for importin alpha is distinct from that of importin beta. These results indicate that importin alpha alone can enter the nucleus via a novel pathway in an importin beta- and Ran-independent manner. Furthermore, this process is evolutionarily conserved as similar results were obtained in Saccharomyces cerevisiae. Moreover, the import rate of importin alpha differed among individual nuclei of permeabilized cells, as demonstrated by time-lapse experiments. This heterogeneous nuclear accumulation of importin alpha was affected by the addition of ATP, but not ATPgammaS. These results suggest that the nuclear import machinery for importin alpha at individual nuclear pore complexes may be regulated by reaction(s) that require ATP hydrolysis.  相似文献   

16.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

17.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

18.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

19.
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~ 40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

20.
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号