首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. In plant, F-box protein plays an important role in signal pathways and involved in various signal transduction systems. A full-length cDNA encoding a putative F-box protein, designated as BnSLY1, was isolated from Brassica napus. The full-length cDNA of BnSLY1 was 809 bp containing a 438 bp open reading frame encoding a precursor protein of 138 amino acid residues. Comparative and bioinformatic analyses revealed that BnSLY1 showed high degree of homology with F-box proteins from other plant species and contained F-box, GGF and LSL conserved motifs. The expression of BnSLY1 under exogenous gibberellins acid-3 (GA3), abscisic acid (ABA) and GA biosynthetic inhibitor paclobutrazol (PAC) was analyzed using real-time PCR. The results showed that the expression of BnSLY1 was down-regulated after GA3 treatment and prominently induced by ABA in the low concentrations. Moreover, BnSLY1 was also induction in the high concentrations of PAC. These results suggest that the expression of BnSLY1 was regulated by the exogenous GA3, ABA and PAC and may be related to endogenous level of GA in B. napus.  相似文献   

2.
A full-length cDNA encoding a putative G protein β subunit (Gβ), designated as BnGB1, was isolated from Brassica napus. BnGB1 was predicted to encode a precursor protein of 378-amino acid residues. The expression of BnGB1 in different B. napus tissues and developmental stages was analyzed using real-time polymerase chain reaction. The results showed that BnGB1 expressed was high at the seventh day, the bolting stage, and fruiting stage. Moreover, BnGB1 was analyzed under four different plant hormones. All of the four tested hormones, abscisic acid (ABA), GA3, brassinosteroid (BR), and indole-3-acetic acid (IAA), triggered an induction of BnGB1 at different hormone concentrations. The expression of BnGB1 was induced by low ABA concentrations, but high ABA concentrations inhibited the expression, which demonstrated that there might be an ABA-mediated feedback repression of the BnGB1 expression. BnGB1 was more prominently induced by high concentrations of GA3 than by other plant hormones. The positive responses stimuli suggested that BnGB1 might be involved in signaling pathways for response to high concentrations of GA. However, the expression of BnGB1 did not significantly regulated by exogenous BR and IAA compared with the level regulated by ABA and GA3. In addition, BnGB1 was responsive to different abiotic stresses and displayed differential expression patterns in B. napus. The BnGB1 was upregulated in salt and drought stress and downregulated in heat and cold stress. These results suggest that BnGB1 plays an important role in ABA and GA signal pathways and may also be involved in plant defense system against environmental stresses in B. napus.  相似文献   

3.
Although dwarf genes have been widely used to improve lodging resistance and enhance harvest index in cereal crops, lodging is still a serious problem in rapeseed (Brassica napus) production. A semi-dwarf B. napus mutant, ds-1, was identified through EMS mutagenesis of a microspore-cultured DH line. The mutant had a significant reduction in height due to a lower first branch position and shorter internodes when compared with wild-type cultivars. This dwarfism was inherited as a single semi-dominant gene, ds-1. DS-1 locus was mapped to chromosome A6, and co-segregated with a microsatellite marker BnEMS1125 derived from the gene BnRGA. BnRGA encodes a DELLA protein that functions as a GA signaling repressor. The expression of a mutant BnRGA allele from ds-1, Bnrga-ds, caused dwarf phenotypes in Arabidopsis. Comparative sequencing of RGA open-reading frames (ORFs) of ds-1 and wild-type cultivars revealed a single proline (P)-to-leucine (L) substitution that may lead to a gain-of-function mutation in GA signaling. The expression of the Arabidopsis homolog, Atrga-ds, bearing this site-directed mutation also rendered dwarf phenotypes in Arabidopsis, which demonstrated that the P-to-L mutation in the VHYNP motif of Bnrga-ds is responsible for the dwarfism. A yeast two-hybrid assay confirmed that this mutation inhibited the interaction between Bnrga-ds/Atrga-ds and the GA receptor, AtGID1A, in the presence of GA3, suggesting that the conserved proline residue in the VHYNP motif of DELLA protein directly participates in DELLA-GID1 interaction. Identification and characterization of the dwarf gene ds-1 will facilitate its utilization in improving lodging resistance in Brassica breeding.  相似文献   

4.
G protein plays an important role in signaling pathways and is involved in various signal transduction systems in plant. A full-length cDNA encoding a putative G protein γ subunit (Gγ), designated as BnGG2, was isolated from Brassica napus L. BnGG2 is predicted to encode a precursor protein of 100 amino acid residues. The expression of BnGG2 in different B. napus tissues and developmental stages was analyzed by using real-time PCR. The results showed that BnGG2 expression level was high at the 7-day-old seedling stage, the bolting stage, and the fruiting stage. Moreover, BnGG2 was analyzed under four different plant hormones. All of the four tested hormones, abscisic acid (ABA), gibberellins acid 3 (GA3), brassinosteroid (BR) and indole-3-acetic acid (IAA), triggered an induction of BnGG2 expression at different hormone concentrations. The expression of BnGG2 was significantly induced by the high concentrations of ABA, BR, and IAA. The expression of BnGG2 was also induced by low GA3 concentrations and inhibited by high GA3 concentrations. In addition, BnGG2 was responsive to different abiotic stresses. The BnGG2 was up-regulated in salt and drought stress and down-regulated in heat and cold stress. These results suggested that BnGG2 plays an important role in plant hormone signaling pathways and may be also involved in plant defense systems against environmental stresses in B. napus.  相似文献   

5.
Two late stages [days 35 and 40 after pollination (DAP)] in zygotic embryo (ZE) development of Brassica napus were utilized to quantify, by the stable isotope-labeled dilution method, levels of “free” and “aglycone” gibberellins (GAs), as well as abscisic acid (ABA), during the programmed dehydration of the seed. GAs from both the early 13 hydroxylation and early non-hydroxylation pathways were present in these ZEs of B napus. Between 35 and 40 DAP endogenous ABA dropped precipitously (almost 30-fold) and this drop in ABA was accompanied by a significant reduction in levels of GA1 and even in levels of the inactive GA catabolites, GA8 and GA29. Levels of GA4 and putative GA85 also dropped appreciably, though not significantly. In contrast, the levels of GA20 and GA9 (the immediate precursors of GA1 and GA4, respectively) did not change in the ZEs during this transition. A fungal-derived cellulase was used to hydrolyze the highly water-soluble fraction, which will contain GA conjugates. Relatively high levels of several GAs (GA9, GA20) were thus quantified after hydrolysis as the aglycones, e.g., 56 and 25 ng/g DW of GA20 and 23 and 5 ng/g DW, of GA9, respectively at DAP 35 and DAP 40. Other GAs found after hydrolysis of the highly water-soluble fraction remained relatively constant between 35 and 40 DAP. An exception was the putative GA85 aglycone, which increased sixfold (free GA85 decreased by ca. half). The transition to the dry seed stage for ZEs of B. napus is thus accompanied not only by the expected reduction in ABA, but also by reduced levels of many “free” GAs, especially the bioactive, 3β-hydroxylated GAs. In contrast, levels of 3-deoxy GAs remain relatively high, implying a partial block in the 3β-hydroxylation “activation” step of GA biosynthesis.  相似文献   

6.
陈敏  马琳  贾聪俊  刘希强  龚攀  王赞 《西北植物学报》2016,36(11):2159-2166
赤霉素受体(GID)是赤霉素信号转导途径的重要成员,直接影响着赤霉素对植物体效应的发挥。该研究利用同源克隆的方法,首次从紫花苜蓿中克隆得到1个赤霉素受体基因,命名为MsGID1b。序列分析发现,MsGID1b基因开放阅读框长度为1 053bp,编码350个氨基酸,推测其蛋白质分子量为39.839kD,是一个无信号肽和跨膜结构的亲水性蛋白。序列比对结果表明,MsGID1b基因与蒺藜苜蓿MtGID1b基因的核苷酸序列相似性为98%,氨基酸序列相似性为99%,且具有HSL家族典型的HGG和GXSXG保守结构域及GA、DELLA蛋白结合位点。荧光定量PCR分析表明,MsGID1b基因在紫花苜蓿各组织中的表达丰度依次为:根盛花初花茎叶荚果;经GA3、ABA、NaCl、PEG和黑暗诱导后该基因表达上调,尤其是在GA3诱导下,MsGID1b基因的表达量一直维持在较高水平,表明MsGID1b基因可能参与紫花苜蓿的抗逆调控。  相似文献   

7.
A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line ‘3529’(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene’s upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.  相似文献   

8.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

9.
In oilseeds, storage lipids provide the respiratory fuel for seedling growth. The enzyme responsible for their initial hydrolysis is lipase (triacylglycerol acylhydrolase; EC 3.1.1.3). We investigated the possibility that lipase is regulated by gibberellins (GAs). In four oilseed rape cultivars of Brassica napus and B. rapa, seed imbibition in 10?6 to 10?3M GA3 increased lipase activity 1.5- to 7-fold over control levels. Conversely, imbibition in 10?7 to 10?5M abscisic acid or 10?6 to 10?4M paclobutrazol, an inhibitor of GA biosynthesis, markedly decreased lipase activity. While lipase activity in B. napus cv. Parkland increased during the first 5 days following imbibition, concentrations of endogenous GA1, GA8 and GA19 (as measured by GC-selected ion monitoring using [2H2]GA internal standards) were relatively constant and GA20, a precursor of GA1, decreased. Levels of endogenous GA3 were apparently variable. Thus, lipase activity was not correlated with GA1 concentration, but the inverse correlation with GA20 concentration suggests that GA turnover could be positively correlated with lipase activity. Lipase activity was also examined in three genotypes of rapid cycling B. rapa that vary in endogenous GA content: rosette, a GA-deficient dwarf, a normal line and elongated internode, a tall mutant with high GA content. The three genotypes showed similar patterns of lipase activity during the first 4 days following imbibition and the subcellular distribution of lipase activity was also similar in the three genotypes. Although GA may be involved in the regulation of lipase in oilseed rape germinants, it is not the sole regulatory factor.  相似文献   

10.
  • The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature.
  • Seeds were incubated in GA (GA3 or GA4) or ABA and their respective biosynthesis inhibitors (paclobutrazol – PAC, and fluridone – FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination.
  • Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea.
  • We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.
  相似文献   

11.
Abscisic acid (ABA) and gibberellins (GAs) are two major phytohormones that regulate seed germination in response to internal and external factors. In this study we used HPLC-ESI/MS/MS to investigate hormone profiles in canola (Brassica napus) seeds that were 25, 50, and 75% germinated and their ungerminated counterparts imbibed at 8°C in either water, 25 μM GA4+7, a 80 mM saline solution, or 50 μM ABA, respectively. During germination, ABA levels declined while GA4 levels increased. Higher ABA levels appeared in ungerminated seeds compared to germinated seeds. GA4 levels were lower in seeds imbibed in the saline solution compared to seeds imbibed in water. Ungerminated seeds imbibed in ABA had lower GA4 levels compared to ungerminated seeds imbibed in water; however, the levels of GA4 were similar for germinated seeds imbibed in either water or ABA. The ABA metabolites PA and DPA increased in seeds imbibed in either water, the saline solution, or ABA, but decreased in GA4+7-imbibed seeds. In addition, ABA inhibited GA4 accumulation, whereas GA had no effect on ABA accumulation but altered the ABA catabolism pathway. Information from our studies strongly supports the concept that the balance of ABA and GA is a major factor controlling germination.  相似文献   

12.
The relationship between absicisic acid (ABA) and gibberellin (GA) changes in developing fruitlets from both Clementina (Citrus clementina, Hort ex Tan) and Okitsu (Citrus unshiu, (Mak) Marc.) trees subjected to changing water conditions was investigated. The treatments consisted of a series of water stress, rainfall, and re-irrigation periods. To confirm the effectiveness of the imposed water changes, leaf water potential and soil moisture were measured. The data indicated that there were antagonistic changes between ABA and GA20, because in both species ABA increased and GA20 decreased during water stress, whereas re-hydration via either rainfall or irrigation reduced ABA but increased GA20. In addition, the data indicated that during water stress GA1 also decreased, whereas GA8 did not change. After re-hydration, however, levels of GA20 products, in general were rather dependent upon the hormonal levels induced in the previous water status. In conclusion, the results showed the occurrence of antagonistic changes between the levels of ABA and GA20 in developing citrus fruitlets subjected to changing water conditions. The data might suggest that gibberellin 20-oxidase is regulated by water stress in citrus fruits.  相似文献   

13.
The synthesis and deactivation of bioactive gibberellins (GA) are regulated by auxin and by GA signalling. The effect of GA on its own pathway is mediated by DELLA proteins. Like auxin, the DELLAs promote GA synthesis and inhibit its deactivation. Here, we investigate the relationships between auxin and DELLA regulation of the GA pathway in stems, using a pea double mutant that is deficient in DELLA proteins. In general terms our results demonstrate that auxin and DELLAs independently regulate the GA pathway, contrary to some previous suggestions. The extent to which DELLA regulation was able to counteract the effects of auxin regulation varied from gene to gene. For Mendel’s LE gene (PsGA3ox1) no counteraction was observed. However, for another synthesis gene, a GA 20-oxidase, the effect of auxin was weak and in WT plants appeared to be completely over-ridden by DELLA regulation. For a key GA deactivation (2-oxidase) gene, PsGA2ox1, the up-regulation induced by auxin deficiency was reduced to some extent by DELLA regulation. A second pea 2-oxidase gene, PsGA2ox2, was up-regulated by auxin, in a DELLA-independent manner. In Arabidopsis also, one 2-oxidase gene was down-regulated by auxin while another was up-regulated. Monitoring the metabolism pattern of GA20 showed that in Arabidopsis, as in pea, auxin can promote the accumulation of bioactive GA.  相似文献   

14.
Parthenocarpy, the productions of seedless fruit without pollination or fertilization, is a potentially desirable trait in many commercially grown fruits, especially in pear, which is self‐incompatible. Phytohormones play important roles in fruit set, a process crucial for parthenocarpy. In this study, 2,4‐dichlorophenoxyacetic acid (2,4‐D), an artificially synthesized plant growth regulator with functions similar to auxin, was found to induce parthenocarpy in pear. Histological observations revealed that 2,4‐D promoted cell division and expansion, which increased cortex thickness, but the effect was weakened by paclobutrazol (PAC), a gibberellin (GA) biosynthesis inhibitor. Phenotypic differences in pear may therefore be due to different GA contents. Hormone testing indicated that 2,4‐D mainly induced the production of bioactive GA4, rather than GA3. Three key oxidase genes function in the GA biosynthetic pathway: GA20ox, GA3ox and GA2ox. In a pear group treated with only 2,4‐D, PbGA20ox2‐like and PbGA3ox‐1 were significantly upregulated. When treated with 2,4‐D supplemented with PAC, however, expression levels of these genes were significantly downregulated. Additionally, PbGA2ox1‐like and PbGA2ox2‐like expression levels were significantly downregulated in pear treated with either 2,4‐D only or 2,4‐D supplemented with PAC. We thus hypothesize that 2,4‐D can induce parthenocarpy by enhancing GA4 biosynthesis.  相似文献   

15.
The hormone gibberellic acid (GA) regulates growth and development throughout the plant life cycle. DELLA proteins are key components of the GA signalling pathway and act to repress GA responses. The “DELLA” amino acid motif is highly conserved among diverse species and is essential for GA-induced destruction of DELLA proteins, which relieves repression. Six genes encoding the DELLA motif were identified within an apple expressed sequence tag (EST) database. Full-length cDNA clones were obtained by RACE and these were designated MdRGL1a/b, MdRGL2a/b, and MdRGL3a/b. Sequence alignment of the predicted proteins indicates that the MdDELLAs are 37–93% homologous to one another and 44–65% to the Arabidopsis DELLAs. The MdDELLAs cluster into three pairs, which reflect the presumed allopolyploid origins of the Maloideae. Expression analysis using quantitative real-time PCR indicates that all three pairs of MdDELLA mRNAs are expressed at the highest levels in summer arrested shoot tips and in autumn vegetative buds. Transgenic Arabidopsis expressing MdRGL2a have smaller leaves and shorter stems, take longer to flower in short days, and exhibit a reduced response to exogenous GA3, indicating significant conservation of gene function between DELLA proteins from apple and Arabidopsis. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Eight rapid-cyclingBrassica genotypes differing in height were treated with gibberellins (GAs) by syringe application to the shoot tip. The height of two genotypes ofBrassica napus, Bn5-2 and Bn5-8, andB. rapa mutants,dwarf 1 (dwf1) anddwarf 2 (dwf2), was unaffected by exogenous GA3 at dosages up to 0.1 g/plant, a level which increased shoot elongation of normal genotypes. Thus, these dwarf mutants are GA-insensitive. In contrast to theB. napus dwarfs, twoB. rapa mutants,rosette (ros), anddormant (dor), elongated following GA3 application. The dwarfros was most sensitive, responding to applications as low as 1 ng GA3/plant. Furthermore,ros also responded to GA1 and some of its precursors with decreasing efficacy: GA3>ent-kaurenoic acid GA1>GA20GA19=GA44GA53. Endogenous GAs were measured by gas chromatography-selected ion monitoring using [2H2]GA internal standards for calibration, from shoots of the GA-insensitive genotypes Bn5-2, Bn5-8 which contained theB. napus mutantdwarf 1, and from a normal genotype Bn5-1. Concentrations of GA1 and GA20 averaged 3.2- and 4.6-fold higher, respectively, and GA19 levels also tended to be higher in the dwarfs than in the normal genotype.  相似文献   

17.
18.
Cloning and characterization of boron transporters in Brassica napus   总被引:1,自引:0,他引:1  
Sun J  Shi L  Zhang C  Xu F 《Molecular biology reports》2012,39(2):1963-1973
  相似文献   

19.
After‐ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after‐ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after‐ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after‐ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after‐ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after‐ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA1/ABA, GA7/ABA, GA12/ABA, GA20/ABA and IAA/ABA ratios significantly increased, while GA3/ABA, GA4/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after‐ripening, thereby altering α‐amylase activity during seed germination. Peak α‐amylase activity occurred at an earlier germination stage in after‐ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy‐related genes was regulated by after‐ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3‐2, qLTG3‐1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after‐ripening. Dormancy release through after‐ripening might be involved in weakening tissues covering the embryo via qLTG3‐1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1.  相似文献   

20.
Recognizing the physiological diversity of different plant organs, studies were conducted to investigate the distribution of endogenous gibberellins (GAs) in Brassica (canola or oilseed rape). GA1 and its biosynthetic precursors, GA20 and GA19, were extracted, chromatographically purified, and quantified by gas-chromatography-selected ion monitoring (GC-SIM), using [2H2]GAs as internal standards. In young (vegetative) B. napus cv. Westar plants, GA concentrations were lowest in the roots, increased acropetally along the shoot axis, and were highest in the shoot tips. GA concentrations were high but variable in leaves. GA1 concentrations also increased acropetally along the plant axis in reproductive plants. During early silique filling, GA1 concentrations were highest in siliques and progressively lower in flowers, inflorescence stalks (peduncles plus pedicels), stem, leaves, and roots. Concentrations of GA19 and GA20 showed similar patterns of distribution except in leaves, in which concentrations were higher, but variable. Immature siliques were qualitatively rich in endogenous GAs and GA1, GA3, GA4, GA8, GA9, GA17, GA19, GA20, GA24, GA29, GA34, GA51, and GA53 were identified by GC-SIM. In whole siliques, GA19, GA20, GA1, and GA8 concentrations declined during maturation due to declining levels in the maturing seeds; their concentrations in the silique coats remained relatively constant and low. These studies demonstrate that GAs are differentially distributed in Brassica with a general pattern of acropetally increasing concentration in shoots and high concentration in actively growing and developing organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号