首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synergism of streptogramins A (virginiamycin M, VM) and B (virginiamycin S, VS), peptidyltransferase inhibitors, was explored in EM4/pLC7-21 (wild type) and EM4/pERY (VS-resistant). These bacterial strains contained multicopy plasmids carrying an rrnH operon with wild type (pLC7-21) or mutated (A2058----U transversion) 23 S rRNA gene. Ribosomes with wild type and mutated rRNA were both present in EM4/pERY. The latter particles did not bind VS; in the presence of VM, however, high affinity VS binding occurred. As shown previously, VS protected against chemical reagents certain bases in domain V rRNA and VM in the stems flanking this loop. Differences between wild type and mutant ribosomes were observed: A2058, A2059, A2062, and G2505, protected by VS and ERY in EM4/pLC7-21, were unshielded in EM4/pERY. A2062 was shielded by VM in EM4/pERY, not in EM4/pLC7-21, and G2505 of mutant ribosomes became protected by VS when VM was simultaneously present. Induction by VM of a high affinity VS binding site in VS-sensitive and -resistant ribosomes indicates A2058 mutation to entail a conformational change of this site, which is counteracted by VM fixation. Accessibility of A2062 to chemical reagents (unlike behavior of EM4/pERY and EM4/pLC7-21 in the presence of VM) implies different conformations for wild type and mutant ribosomes.  相似文献   

2.
The synergistic effect of type A (virginiamycin M (VM)) and type B (virginiamycin S (VS)) synergimycins and their antagonistic effect against erythromycin (a 14-membered macrolide) for binding to the large ribosomal subunit (50 S) have been related. This investigation has now been extended to 16-membered macrolides (leucomycin A3 and spiramycin) and to lincosamides (lincomycin). A dissociation of VS-ribosome complexes was induced as well by 16-membered macrolides as by lincosamides. The observed dissociation rate constant of VS-ribosome complexes was identified with the kappa-vs in the case of 16-membered macrolides, but linearly related to lincomycin concentration, suggesting a direct binding of the latter antibiotic to VS-ribosome complexes and the triggering of a conformational change of particles entailing VS release. Two different mechanisms were also involved in the VM-promoted reassociation to ribosomes of VS previously displaced by either macrolides or lincosamides. By binding to lincosamide-ribosome complexes, VM induced a conformational change of ribosomes resulting in higher affinity for VS and lower affinity for lincosamides. On the contrary, an incompatibility for a simultaneous binding of VM and 16-membered macrolides to ribosomes was observed. These results have been interpreted by postulating specific (nonoverlapping) and aspecific (overlapping) antibiotic binding sites at the peptidyltransferase domain. All the kinetic constants of five antibiotic families (type A and B synergimycins, 14- and 16-membered macrolides, and lincosamides) and a topological model of peptidyltransferase are presently available.  相似文献   

3.
The kinetics of the interaction between the 50 S subunits (R) of bacterial ribosomes and the antibiotics virginiamycin S (VS), virginiamycin M (VM), and erythromycin have been studied by stopped flow fluorimetric analysis, based on the enhancement of VS fluorescence upon its binding to the 50 S ribosomal subunit. Virginiamycin components M and S exhibit a synergistic effect in vivo, which is characterized in vitro by a 5- to 10-fold increase of the affinity of ribosomes for VS, and by the loss of the ability of erythromycin to displace VS subsequent to the conformational change (from R to R*) produced by transient contact of ribosomes with VM. Our kinetic studies show that the VM-induced increase of the ribosomal affinity for VS (K*VS = 25 X 10(6) M-1 instead of KVS = 5.5 X 10(6) M-1) is due to a decrease of the dissociation rate constant (k*-VS = 0.008 s-1 instead of 0.04 s-1). The association rate constant remains practically the same (k+VS approximately k*+VS = 2.8 X 10(5) M-1 s-1), irrespective of the presence of VM. VS and erythromycin bind competitively to ribosomes. This effect has been exploited to determine the dissociation rate constant of VS directly by displacement experiments from VS . 50 S complexes, and the association rate constant of erythromycin (k+Ery = 3.2 X 10(5) M-1 S-1) on the basis of competition experiments for binding of free erythromycin and VS to ribosomes. By making use of the change in competition behavior of erythromycin and VS, after interaction of ribosomes with VM, the conformational change induced by VM has been explored. Within the experimentally available concentration region, the catalytic effect of VM has been shown to be coupled to its binding kinetics, and the association rate constant of VM has been determined (k+VM = 1.4 X 10(4) M-1 S-1). Evidence is presented for a low affinity binding of erythromycin (K*Ery approximately 3.3 X 10(4) M-1) to ribosomes altered by contact with VM. A model involving a sequence of 5 reactions has been proposed to explain the replacement of ribosome-bound erythromycin by VS upon contact of 50 S subunits with VM.  相似文献   

4.
Affinity labeling of the virginiamycin S binding site on bacterial ribosome   总被引:1,自引:0,他引:1  
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.  相似文献   

5.
Summary Single synergimycins (virginiamycin M or VM, type A component, and virginiamycin S or VS, type B component) inhibit reversibly growth and protein synthesis in Bacillus subtilis; a mixture of VM and VS produces viability loss and irreversible halting of peptide bond formation. In vitro, VM produces a five- to tenfold increase of the affinity of Escherichia coli ribosomes for VS, and erythromycin, which competes with VS for binding to eubacterial 50S subunits, is ineffective in the presence of VM. In the present work, the action of synergimycins and macrolides has been explored in vivo and in vitro on methanogenic and sulphurdependent archaebacteria. Multiplication of Methanococcus vannielii was synergistically inhibited by VM plus VS (for technical reasons, the action of synergimycins on growth and viability of most archaebacteria was unverifiable). When assayed on cell-free systems for protein synthesis from methanogens, both macrolides and single synergimycins were found ineffective. However, a mixture of VM and VS strongly inhibited poly(U)-directed polyphenylalanine synthesis. Binding of erythromycin to archaebacterial ribosomes and subunits was 10% (Mc. vannielii) or less than the control value (E. coli), and was not competed for by tylosin. The association constant of VS-50S complex formation, although low in the case of Mc. vannielii (as compared to enterobacteria), underwent a 100-fold increase in the presence of VM and was unaffected by macrolides. These data further stress the difference of the organization for protein synthesis of eubacteria and archaebacteria.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

6.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.  相似文献   

7.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.  相似文献   

8.
J Egebjerg  R A Garrett 《Biochimie》1991,73(7-8):1145-1149
The binding sites of the antibiotics pactamycin and celesticetin on the rRNAs of Escherichia coli ribosomes were investigated by a chemical footprinting procedure. Pactamycin protected residues G-693 and C-795 in 16S RNA which are located in an important functional region of the 30S subunit participating in initiation complex formation and ribosomal subunit interaction. Celesticetin altered the reactivities of 5 residues A-2058, A-2059, A-2062, A-2451 and G-2505 within the central loop of domain V of 23S RNA which has been implicated in peptidyltransferase activity. Inferences are drawn concerning the mode of action of the antibiotics.  相似文献   

9.
Although virginiamycin components VM and VS are known to exert in vivo a synergistic inhibition of bacterial growth and viability, in cell-free systems only VM has proven active. In the present work, the in vivo and in vitro activities of VM and VS on Bacillus subtilis have been compared.Peptide formation in homogenates of bacteria previously incubated with either VM or VS was found strongly repressed; the 2 components acted synergistically. Ribosomes were fully responsible for this effect, as shown by mixed reconstitution experiments. On the other hand, cytoplasm from control bacteria disrupted in 10 mM Mg2+ buffer was refractory to in vitro inhibition by virginiamycin, whereas ribosomes prepared in 1 mM Mg2+ were sensitive to VM. VS was inactive on poly(U)-directed poly(phenylalanine) formation, and displayed some activity on the poly(A)-poly(lysine) system. In a cell-free system from Bacillus subtilis infected with phage 2C, both VM and VS were active and blocked synergistically protein synthesis in vitro. When the host cells were incubated with VS and the corresponding homogenate was then treated with VM, a complete inhibition of protein synthesis was observed. The present work, thus, describes the techniques for investigating the in vivo and in vitro action of synergimycins on the same organism, and for reproducing in vitro the synergistic interaction of type A and B components previously observed only in vivo.Abbreviations poly(U) poly(uridylic acid) - poly(A) poly(adenylic acid) - VM and VS the M and S components of virginiamycin - pfu plaque forming units  相似文献   

10.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

11.
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.  相似文献   

12.
The participation of 18S, 5.8S and 28S ribosomal RNA in subunit association was investigated by chemical modification and primer extension. Derived 40S and 60S ribosomal subunits isolated from mouse Ehrlich ascites cells were reassociated into 80S particles. These ribosomes were treated with dimethyl sulphate and 1-cyclohexyl-3-(morpholinoethyl) carbodiimide metho-p-toluene sulfonate to allow specific modification of single strand bases in the rRNAs. The modification pattern in the 80S ribosome was compared to that of the derived ribosomal subunits. Formation of complete 80S ribosomes altered the extent of modification of a limited number of bases in the rRNAs. The majority of these nucleotides were located to phylogenetically conserved regions in the rRNA but the reactivity of some bases in eukaryote specific sequences was also changed. The nucleotides affected by subunit association were clustered in the central and 3'-minor domains of 18S rRNA as well as in domains I, II, IV and V of 5.8/28S rRNA. Most of the bases became less accessible to modification in the 80S ribosome, suggesting that these bases were involved in subunit interaction. Three regions of the rRNAs, the central domain of 18S rRNA, 5.8S rRNA and domain V in 28S rRNA, contained bases that showed increased accessibility for modification after subunit association. The increased reactivity indicates that these regions undergo structural changes upon subunit association.  相似文献   

13.
In order to map the rRNA environment of the acceptor end of tRNA in th e ribosome, hydroxyl radicals were generated in situ from Fe(II) attached via an EDTA linker to the 5' end of tRNA. Nucleotides in rRNA cleaved by the radicals were identified by primer extension, and assigned to the ribosomal A, P and E sites by standard criteria. In the A site, cleavages were found in the 2555-2573 region of 23S rRNA, around bases previously shown to be protected by A site tRNA, and in the alpha-sarcin loop, the site of interaction of elongation factors EF-Tu and EF-G. P site cleavages occurred in the 2250 loop, where a base pair is made with C74 of tRNA; and around the 2493 region in domain V. Interestingly, two clusters of nucleotides in 23S rRNA are accessible to both A site and P site tRNA probes. The first cluster is in the 1940-1965 region of domain IV, around the site of affinity labeling by the 3' end of tRNA, and the second cluster is around the bulged adenosine A2602, whose accessibility to chemical probes is enhanced by P site tRNA and decreased by A site tRNA. From the E site, cleavages occur in the 2390-2440 region, surrounding C2394, a base protected from dimethyl sulfate by E site tRNA, and in the phylogenetically variable stem at positions 1860/1880 of domain IV. Unexpectedly, no cleavages were detected in the central loop of domain V of 23S rRNA.  相似文献   

14.
Functional large ribosomal subunits of Thermus aquaticus can be reconstituted from ribosomal proteins and either natural or in vitro transcribed 23 S and 5 S rRNA. Omission of 5 S rRNA during subunit reconstitution results in dramatic decrease of the peptidyl transferase activity of the assembled subunits. However, the presence of some ribosome-targeted antibiotics of the macrolide, ketolide or streptogramin B groups during 50 S subunit reconstitution can partly restore the activity of ribosomal subunits assembled without 5 S rRNA. Among tested antibiotics, macrolide RU69874 was the most active: activity of the subunits assembled in the absence of 5 S rRNA was increased more than 30-fold if antibiotic was present during reconstitution procedure. Activity of the subunits assembled with 5 S rRNA was also slightly stimulated by RU69874, but to a much lesser extent, approximately 1.5-fold. Activity of the native T. aquaticus 50 S subunits incubated in the reconstitution conditions in the presence of RU69874 was, in contrast, slightly decreased. The presence of antibiotics was essential during the last incubation step of the in vitro assembly, indicating that drugs affect one of the last assembly steps. The 5 S rRNA was previously shown to form contacts with segments of domains II and V of 23 S rRNA. All the antibiotics which can functionally compensate for the lack of 5 S rRNA during subunit reconstitution interact simultaneously with the central loop in domain V (which is known to be a component of peptidyl transferase center) and a loop of the helix 35 in domain II of 23 S rRNA. It is proposed that simultaneous interaction of 5 S rRNA or of antibiotics with the two domains of 23 S rRNA is essential for the successful assembly of ribosomal peptidyl transferase center. Consequently, one of the functions of 5 S rRNA in the ribosome can be that of assisting the assembly of ribosomal peptidyl transferase by correctly positioning functionally important segments of domains II and V of 23 S rRNA.  相似文献   

15.
The molecular basis of a mutation conferring an erythromycin-resistance phenotype was explored, as an approach to the role of 23 S rRNA in the peptidyl-transferase activity of 50 S ribosomal subunits. Mutagenization of an Escherichia coli strain, which carried the multicopy plasmid pLC7-21 containing the rrnH operon, led to the production of an erythromycin-resistant strain. Plasmid pBFL1 isolated from this mutant was able to transform the sensitive RecA- strain EM4 and to induce a "dissociated" type of antibiotic resistance. Two ribosome populations occurred in EM4/pBFL1: normal particles coded for by the seven rrn chromosomal genes and mutated particles containing rRNA of plasmid origin. The latter particles displayed in vitro lower affinity and susceptibility to erythromycin than wild type particles. The mutation within plasmid pBFL1 was mapped by a multiple primer extension technique. Three synthetic primers were used to sequence the central loop in domain V of 23 S rRNA, leading to identification of a C to U transition at position 2611. This base change was proved to be responsible for the erythromycin-resistance phenotype by the plasmid-plasmid marker rescue technique. A molecular explanation for the rrn mutations leading, respectively, to undissociated and to dissociated types of resistance to the MLSb (macrolide-lincosamide-synergimycin B) group of antibiotics is proposed. These results and some literature data support the notion that rRNA bases involved in antibiotic resistance play a conformational role in the ribosomal binding sites for the MLSb antibiotics.  相似文献   

16.
Analysis of fluorescence quenching of ribosome-bound virginiamycin S   总被引:1,自引:0,他引:1  
The two virginiamycin components VM and VS interact synergistically with bacterial ribosomes in vitro and in vivo. Ribosome affinity for virginiamycin S increases about 10-fold upon incubation with virginiamycin M. This effect has been previously traced by spectrofluorimetric measurement based on the enhancement of virginiamycin S fluorescence upon its binding to the 50 S ribosomal subunit. In the present work the action of two virginiamycin S fluorescence quenchers, acrylamide and iodide, has been explored to gather information about the accessibility of ribosome-bound virginiamycin S and the variation of the accessibility level in the presence of virginiamycin M. Both acrylamide (non-ionized quencher) and iodide (ionized quencher) proved powerful quenchers of free virginiamycin S solutions. Since a comparable effect was obtained on 3- hydroxypicolinamide , the latter was indicated as the part of the molecule involved in the fluorescence effect. Fluorescence quenching by either agent was of the dynamic, i.e. collisional, type. Such an inference was based on the fact that these quenchers merely modified the emission spectrum (not the absorption spectrum), the bimolecular rate constant for the quenching process decreased linearly with the viscosity of the medium (static-type quenching is viscosity-independent), and that linear Stern-Volmer plots were obtained. The quenching ability of both agents underwent a sharp decrease in the presence of ribosomes; however, the Stern-Volmer equation was followed only in the case of acrylamide, whereas Lehrer 's relationship had to be applied in the case of iodide. When ribosomes were incubated with virginiamycin M, the fluorescence quenching ability of acrylamide and iodide was significantly reduced. Conclusions are as follows: a) the 3- hydroxypicolinyl residue of virginiamycin S is buried within an open well on the ribosome surface and is likely to be involved in the interaction with the binding site; b) the accessibility to the well is partly controlled by electrostatic forces; c) interaction of ribosomes with virginiamycin M entails a conformational change whereby the access to the well is reduced. These findings provide a molecular explanation for the previously observed increase of the association constant of virginiamycin S to ribosomes incubated with virginiamycin M which was found to be due to the decrease of the dissociation rate constant (the association rate constant remains practically the same).  相似文献   

17.
Summary Virginiamycin S (VS, a type B component of the synergistin group of antibiotics) is fluorescent in solution: the fluorescence intensity is proportional to VS concentration. The intensity of VS fluorescence was found to increase upon addition of 50S ribosomal subunits, and this variation (I416nm) to be proportional to the concentration of 50S subunits. This new technique was, then, used to measure the binding reaction of VS to ribosomes. Similar patterns of link age were obtained for ribosomes and large subunits, whereas very little fixation to 30S particles was detected. The binding reaction was virtually instantaneous at any temperature, and, for saturating VS, was not influenced by Mg++ concentration in the range 1 to 20 mM, nor by the replacement of 100 mM K+ with NH 4 + . The association constant of VS to 50S particles was found to be KA=2.5 × 106M–1, and from the Scatchard plot a value of 0.9 was calculated, which points to a stoichiometric reaction leading to 1 mole VS bound per mole of 50S particles. upon fixation of virginiamycin M (VM, a type A component of the synergistin group of antibiotics), the I of the VS-ribosome complex was increased, and a KA =15 × 106M–1 was recorded for the association constant of VS to 50S particles. Such sixfold increase in the affinity of ribosomes for VS may account for the synergistic effect of the 2 virginiamycin components in sensitive bacteria.  相似文献   

18.
Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli ribosomes has been compared by chemical footprinting. The protection afforded by both drugs is limited to the peptidyl transferase loop of 23S rRNA. Under conditions of stoichiometric binding at 1 mM drug concentration in vitro, both drugs strongly protect 23S rRNA bases A2058 and A2451 from dimethyl sulphate and G2505 from kethoxal modification; G2061 is also weakly protected from kethoxal. The modification patterns differ in that A2059 is additionally protected by clindamycin but not by lincomycin. The affinity of the two drugs for the ribosome, estimated by footprinting, is approximately the same, giving Kdiss values of 5 microM for lincomycin and 8 microM for clindamycin. The results show that in vitro the drugs are equally potent in blocking their ribosomal target site. Their inhibitory effects on peptide bond formation could, however, be subtly different.  相似文献   

19.
We have shown that the domain V of bacterial 23 S rRNA could fold denatured proteins to their active state. This segment of 23 S rRNA could further be split into two parts. One part containing mainly the central loop of domain V could bind denatured human carbonic anhydrase I stably. This association could be reversed by adding the other part of domain V. The released enzyme was directed in such a way by the central loop of domain V that it could now fold by itself to active form. This agrees with our earlier observation that proteins fold within the cell posttranslationally, a process that is completed after release of the newly synthesized polypeptide from the ribosome (Chattopadhyay, S., Pal, S., Chandra, S., Sarkar, D., and DasGupta, C. (1999) Biochim. Biophys. Acta 1429, 293-298).  相似文献   

20.
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号