首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The antibiotic virginiamycin is a combination of two molecules, virginiamycin M1 (VM1) and virginiamycin S1 (VS1) or analogues, which function synergistically by binding to bacterial ribosomes and inhibiting bacterial protein synthesis. Both VM1 and VS1 dissolve poorly in water and are soluble in more hydrophobic solvents. We have recently reported that the 3D conformation of VM1 in CDCl3 solution (Aust. J. Chem. 57:415, 2004; Org. Biomol. Chem. 2:2919, 2004) differs markedly from the conformation bound to a VM1 binding enzyme (Sugantino and Roderick in Biochemistry 41:2209, 2002) and to 50S ribosomes (Hansen et al. in J. Mol. Biol. 330:1061, 2003) as found by X-ray crystallographic studies. We now report the results of further NMR studies and subsequent molecular modeling of VM1 dissolved in CD3CN/H2O and compare the structure with that in CD3OD and CDCl3. The conformations of VM1 in CD3CN/H2O, CD3OD and CDCl3 differ substantially from one another and from the bound form, with the aqueous form most like the bound structure. We propose that the flexibility of the VM1 molecule in response to environmental conditions contributes to its effectiveness as an antibiotic.  相似文献   

3.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   

4.
To study the properties of the extracellular epidermal growth factor (EGF) binding domain of the human EGF receptor, we have infected insect cells with a suitably engineered baculovirus vector containing the cDNA encoding the entire ectodomain of the parent molecule. This resulted in a correctly folded, stable, 110 kd protein which possessed an EGF binding affinity of 200 nM. The protein was routinely purified in milligram amounts from 1 litre insect cell cultures using a series of three standard chromatographic steps. The properties of the ectodomain were studied before and after the addition of different EGF ligands, using both circular dichroism and fluorescence spectroscopic techniques. A secondary structural analysis of the far UV CD spectrum of the ectodomain indicated significant proportions of alpha-helix and beta-sheet in agreement with a published model of the EGF receptor. The ligand additions to the receptor showed differences in both the near- and far-UV CD spectra, and were similar for each ligand used, suggesting similar conformational differences between uncomplexed and complexed receptor. Steady-state fluorescence measurements indicated that the tryptophan residues present in the ectodomain are buried and that the solvent-accessible tryptophans in the ligands become buried on binding the receptor. The rotational correlation times measured by fluorescence anisotropy decay for the receptor-ligand complexes were decreased from 6 to 2.5 ns in each case. This may indicate a perturbation of the tryptophan environment of the receptor on ligand binding. Ultracentrifugation studies showed that no aggregation occurred on ligand addition, so this could not explain the observed differences from CD or fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
E Terzi  L Poteur  E Trifilieff 《FEBS letters》1992,309(3):413-416
Phospholamban (PLB), an integral membrane protein of cardiac sarcoplasmic reticulum (SR), is described as the regulator of the Ca(2+)-ATPase pump, via its phosphorylation-dephosphorylation of Ser-16. Recently it has been shown that a direct interaction between the N-terminal hydrophilic domain of PLB and Ca(2+)-ATPase may be one of the mechanisms of regulation. In order to show that this interaction could be modulated by a phosphorylation-induced conformational change in PLB, we ran CD studies on the synthetic peptide PLB(2-33) in its phosphorylated and non-phosphorylated forms, at various pHs, concentrations and in the absence or presence of trifluoroethanol. The results show a clear difference in structure of the phosphorylated and non-phosphorylated peptide.  相似文献   

6.
The M2 protein from influenza A is a pH-activated proton channel that plays an essential role in the viral life cycle and serves as a drug target. Using spin labeling EPR spectroscopy, we studied a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension. We obtained residue-specific environmental parameters under both high- and low-pH conditions for nine consecutive C-terminal sites. The region forms a membrane surface helix at both high and low pH, although the arrangement of the monomers within the tetramer changes with pH. Both electrophysiology and EPR data point to a critical role for residue Lys 49.  相似文献   

7.
8.
A T Brünger  R Huber  M Karplus 《Biochemistry》1987,26(16):5153-5162
The trypsinogen to trypsin transition has been investigated by a stochastic boundary molecular dynamics simulation that included a major portion of the trypsin molecule and the surrounding solvent. Attention focused on the "activation domain", which crystallographic studies have shown to be ordered in trypsin and disordered in its zymogen, trypsinogen. The chain segments that form the activation domain were found to exhibit large fluctuations during the simulation of trypsin. To model a difference between trypsin and trypsinogen, the N-terminal residues Ile-16 and Val-17 were removed in the former and replaced by water molecules. As a result of the perturbation, a structural drift of 1-2 A occurred that is limited to the activation domain. Glycine residues are found to act as hinges for the displaced chain segments.  相似文献   

9.
ERp57, a member of the protein-disulfide isomerase family, although mainly localized in the endoplasmic reticulum is here shown to have a nuclear distribution. We previously showed the DNA-binding properties of ERp57, its association with the internal nuclear matrix, and identified the C-terminal region, containing the a' domain, as being directly involved in the DNA-binding activity. In this work, we demonstrate that its DNA-binding properties are strongly dependent on the redox state of the a' domain active site. Site-directed mutagenesis experiments on the first cysteine residue of the -CGHC-thioredoxin-like active site lead to a mutant domain (C406S) lacking DNA-binding activity. Biochemical studies on the recombinant domain revealed a conformational change associated with the redox-dependent formation of a homodimer, having two disulfide bridges between the cysteine residues of two a' domain active sites. The formation of intermolecular disulfide bridges rather than intramolecular oxidation of active site cysteines is important to generate species with DNA-binding properties. Thus, in the absence of any dedicated motif within the protein sequence, this structural rearrangement might be responsible for the DNA-binding properties of the C-terminal domain. Moreover, NADH-dependent thioredoxin reductase is active on intermolecular disulfides of the a' domain, allowing the control of dimeric protein content as well as its DNA-binding activity. A similar behavior was also observed for whole ERp57.  相似文献   

10.
GMP-140, a receptor for myeloid cells that is expressed on surfaces of thrombin-activated platelets and endothelial cells, is a member of the selectin family of adhesion molecules that regulate leukocyte interactions with the blood vessel wall. Each selectin contains an N-terminal domain homologous to Ca(2+)-dependent lectins and mediates cell-cell contact by binding to oligosaccharide ligands in a Ca(2+)-dependent manner. The mechanisms by which Ca2+ promotes selectin-dependent cellular interactions have not been defined. We demonstrate that purified GMP-140 contains two high affinity binding sites for Ca2+ as measured by equilibrium dialysis (Kd = 22 +/- 2 microM). Occupancy of these sites by Ca2+ alters the conformation of the protein as detected by a reduction in intrinsic fluorescence emission intensity (Kd = 4.8 +/- 0.2 microM). This Ca(2+)-dependent conformational change exposes an epitope spanning residues 19-34 of the lectin domain that is recognized by a monoclonal antibody capable of blocking neutrophil adhesion to GMP-140 (half-maximal antibody binding at approximately 20 microM Ca2+). Furthermore, a synthetic peptide encoding this epitope, CQNRYTDLVAIQNKNE, inhibits neutrophil binding to GMP-140. Mg2+ also alters the conformation of the protein, but not in a manner that will support leukocyte recognition in the absence of Ca2+. There is a strong correlation between the Ca2+ levels required for neutrophil adhesion to GMP-140, for occupancy of the two Ca(2+)-binding sites, for the fluorescence-detected conformational change, and for exposure of the antibody epitope in the lectin domain. We conclude that binding of Ca2+ to high affinity sites on GMP-140 modulates the conformation of the lectin domain in a manner that is essential for leukocyte recognition.  相似文献   

11.
12.
FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity. It was shown that deletion of the EAL domain or mutation of the signature EVL motif affects the unipolar localization of FimX. However, it was not understood how the C-terminal EAL domain could influence protein localization considering that the localization sequence resides in the remote N-terminal region of the protein. Using hydrogen/deuterium exchange-coupled mass spectrometry, we found that the binding of c-di-GMP to the EAL domain triggers a long-range (∼ca. 70 Å) conformational change in the N-terminal REC domain and the adjacent linker. In conjunction with the observation that mutation of the EVL motif of the EAL domain abolishes the binding of c-di-GMP, the hydrogen/deuterium exchange results provide a molecular explanation for the mediation of protein localization and type IV pilus biogenesis by c-di-GMP through a remarkable allosteric regulation mechanism.  相似文献   

13.
Slepenkov SV  Witt SN 《FEBS letters》2003,539(1-3):100-104
The molecular chaperone DnaK is composed of two functional domains, the ATPase domain and the substrate-binding domain. In this report, we show that peptide binding to DnaK can be sensed in real time through a labeled nucleotide bound in the ATPase domain. Specifically, when N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine 5'-triphosphate (MABA)-ATP.DnaK complexes are rapidly mixed with excess peptide, MABA fluorescence rapidly increases and the rate of increase is proportional to peptide concentration. Analysis of the formation traces yield on and off rate constants that are exactly equal to the rate constants obtained from experiments that directly probe peptide binding to DnaK. These results are the first to show that peptide binding to ATP.DnaK triggers a concerted conformational change in the ATPase domain.  相似文献   

14.
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II can be phosphorylated by a p34cdc2/CDC28-containing CTD kinase. Phosphorylated serine (or threonine) is located at positions 2 and 5 in the repetitive heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show here that phosphorylation of the mouse CTD retards its electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels in a way similar to that observed for the II0 form of the largest subunit of RNA polymerase II phosphorylated in vivo. At the maximum level of phosphorylation by CTD kinase in vitro, there are 15-20 phosphates evenly distributed among the 52 heptapeptide repeats that comprise the mouse CTD. Gel filtration chromatography and sucrose gradient ultracentrifugation analyses indicate that phosphorylation induces a dramatic conformational change in the CTD with the phosphorylated form adopting a far more extended structure than the unphosphorylated CTD.  相似文献   

15.
The N-terminal domain of the influenza hemagglutinin (HA) is the only portion of the molecule that inserts deeply into membranes of infected cells to mediate the viral and the host cell membrane fusion. This domain constitutes an autonomous folding unit in the membrane, causes hemolysis of red blood cells and catalyzes lipid exchange between juxtaposed membranes in a pH-dependent manner. Combining NMR structures determined at pHs 7.4 and 5 with EPR distance constraints, we have deduced the structures of the N-terminal domain of HA in the lipid bilayer. At both pHs, the domain is a kinked, predominantly helical amphipathic structure. At the fusogenic pH 5, however, the domain has a sharper bend, an additional 3(10)-helix and a twist, resulting in the repositioning of Glu 15 and Asp 19 relative to that at the nonfusogenic pH 7.4. Rotation of these charged residues out of the membrane plane creates a hydrophobic pocket that allows a deeper insertion of the fusion domain into the core of the lipid bilayer. Such an insertion mode could perturb lipid packing and facilitate lipid mixing between juxtaposed membranes.  相似文献   

16.
Activation of the serine protease plasmin from its zymogen, plasminogen, is the key step in fibrinolysis leading to blood clot dissolution. It also plays critical roles in cell migration, such as in tumor metastasis. Here, we report the crystal structure of an inactive S741A mutant of human plasminogen catalytic domain at 2.0 A resolution. This structure permits a direct comparison with that of the plasmin catalytic unit. Unique conformational differences are present between these two structures that are not seen in other zymogen-enzyme pairs of the trypsin family. The functional significance of these differences and the structural basis of plasminogen activation is discussed in the light of this new structure.  相似文献   

17.
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism.  相似文献   

18.
M Burke  E Reisler 《Biochemistry》1977,16(25):5559-5563
The reaction of myosin with three bifunctional sulfhydryl reagents of differing cross-linking span is reported. In the absence of nucleotide only p-N,N'-phenylenedimaleimide with a cross-linking span of 12-14 A can bridge between the two essential sulfhydryls of myosin. The other two reagents, 2,4-dinitro-1,5-difluorobenzene and 4,4'-difluoro-3,3'-dinitrodiphenyl sulfone with cross-linking spans of 3-5 and 7-10 A, respectively, react under identical conditions with the SH1 sulfhydryl but do not bridge to the SH2 group. In the presence of MgADP, both p-N,N'-phenylenedimaleimide and 4,4'-difluoro-3,3'-dinitrodiphenyl sulfone bridge across the SH1 and SH2 groups indicating a closer proximity of these two sulfhydryls in the presence of bound nucleotide. These results are discussed in relation to the conformational change induced in myosin by binding of the nucleotide.  相似文献   

19.
One mole of horse hemoglobin tetramer reacts with 2 moles of 2-chloromercuri-4-nitrophenol (MNP) at beta 93 cysteine. The difference spectra between NMP-bound hemoglobin and hemoglobin, measured with the aid of ascorbic acid and ascorate oxidase [EC 1.10.3.3] as deoxygenation reagents, indicate that the pK of the phenolic hydroxyl group of MNP increases by 0.6 to 0.8 pH unit on deoxygenation of the hemoglobin. The Hill constant of the modified hemoglobin changes with pH. It decreases from about 2.4 at pH 6.8 to about 1.0 at pH 9.0 This effect of the reagent is interpreted as inherent to the reporter groups.  相似文献   

20.
Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments. To further understand this mechanism of SM protein/SNARE coupling, we have elucidated the structure in solution of the isolated N-terminal domain of rat Sly1 (rSly1N) and analyzed its complex with an N-terminal peptide of rat syntaxin 5 by NMR spectroscopy. Comparison with the crystal structure of a complex between Sly1p and Sed5p, their yeast homologues, shows that syntaxin 5 binding requires a striking conformational change involving a two-residue shift in the register of the C-terminal beta-strand of rSly1N. This conformational change is likely to induce a significant alteration in the overall shape of full-length rSly1 and may be critical for its function. Sequence analyses indicate that this conformational change is conserved in the Sly1 family but not in other SM proteins, and that the four families represented by the four SM proteins found in yeast (Sec1p, Sly1p, Vps45p and Vps33p) diverged early in evolution. These results suggest that there are marked distinctions between the mechanisms of action of each of the four families of SM proteins, which may have arisen from different regulatory requirements of traffic in their corresponding membrane compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号