首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The profile structure of functional sarcoplasmic reticulum (SR) membranes was investigated by X-ray diffraction methods to a resolution of 10 A. The lamellar diffraction data from hydrated oriented multilayers of SR vesicles showed monotonically increasing widths for higher order lamellar reflections, indicative of simple lattice disorder within the multilayer. A generalized Patterson function analysis, previously developed for treating lamellar diffraction from lattice-disordered multilayers, was used to identify the autocorrelation function of the unit cell electron density profile. Subsequent deconvolution of this autocorrelation function provided the most probable unit cell electron density profile of the SR vesicle membrane pair. The resulting single membrane profile possesses marked asymmetry, suggesting that a major portion of the Ca++ -ATPase resides on the exterior of the vesicle. The electron density profile also suggests that the Ca++-dependent ATPase penetrates into the lipid hydrocarbon core of the SR membrane. Under conditions suitable for X-ray analysis, SR vesicles prepared as partially dehydrated oriented multilayers are shown to conserve most of their ATP-induced Ca++ uptake functionality, as monitored spectrophotometrically with the Ca++ indicator arsenazo III. This has been verified both in resuspensions of SR after centrifugation and slow partial dehydration, and directly in SR multilayers in a partially dehydrated state (20-30 percent water). Therefore, the profile structure of the SR membrane that we have determined may closely resemble that found in vivo.  相似文献   

2.
The nicotinic acetylcholine receptor (nAChR) carries two binding sites for snake venom neurotoxins. alpha-Bungarotoxin from the Southeast Asian banded krait, Bungarus multicinctus, is a long neurotoxin which competitively blocks the nAChR at the acetylcholine binding sites in a relatively irreversible manner. Low angle x-ray diffraction was used to generate electron density profile structures at 14-A resolution for Torpedo californica nAChR membranes in the absence and presence of alpha-bungarotoxin. Analysis of the lamellar diffraction data indicated a 452-A lattice spacing between stacked nAChR membrane pairs. In the presence of alpha-bungarotoxin, the quality of the diffraction data and the lamellar lattice spacing were unchanged. In the plane of the membrane, the nAChRs packed together with a nearest neighbor distance of 80 A, and this distance increased to 85 A in the presence of toxin. Electron density profile structures were calculated in the absence and presence of alpha-bungarotoxin, revealing a location for the toxin binding sites. In native, fully-hydrated nAChR membranes, alpha-bungarotoxin binds to the nAChR outer vestibule and contacts the surface of the membrane bilayer.  相似文献   

3.
Phase separation in artificially stacked multilayers of isolated bovine retinal rod outer segment (ROS) membranes has been examined via x-ray diffraction and electron microscopy. Specimens were prepared by isopotential spin drying followed with partial hydration by equilibration against moist gas streams. Upon dehydration, the multilamellar membrane phase assumes a binary phase composition consisting of concentrated protein-containing lamellae interspersed with microdomains of hexagonally packed tubes of lipid in a HII configuration. The HII lattice is geometrically coupled to the lamellar phase with one set of hexagonal crystal planes co-planar to the local membrane lamellae. The hexagonal microdomains bear a striking resemblance to the "paracrystalline inclusions" observed in fast-frozen, intact frog ROS (Corless and Costello. 1981. Exp. Eye Res. 32:217). The lamellar lattice is characterized by an unusually small degree of disorder. Sharp lamellar diffraction with a 120 A unit cell is observed (at near total dehydration) to a resolution of 6 A. A model consistent with the data is that a multilamellar array of ROS disks is stable as long as the external disk surfaces are kept sufficiently far apart. If the distance between the membranes is allowed to shrink below a certain critical value, the disk lipids spontaneously convert to a nonbilayer phase. This suggests that the structure of the ROS is stabilized by an internal framework that acts to keep the disks apart from one another and from the plasmalemma. Thus, the necessity of avoiding phase separations may provide a rationale for the peculiar morphology of the ROS.  相似文献   

4.
Reaction center protein, isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26 mutant, was incorporated into phosphatidylcholine bilayers forming a homogeneous population of unilamellar vesicles. Cytochrome c, added to preformed reaction center-phosphatidylcholine vesicles, rapidly reduced up to 90% of the laser-generated (BChl)2+ of the reaction center (with kinetics of electron transfer similar to those in the chromatophore membrane) which suggests that the portion of the reaction center which accommodates functional cytochrome c binding sites is exposed predominantly on the exterior of the vesicles. Unit cell electron density profiles were derived from lamellar X-ray diffraction from oriented reaction center-phosphatidylcholine membrane multilayers at varying lipid/protein ratios. The analysis of these profiles showed that the reaction center protein incorporates into the phosphatidylcholine membrane with unique sidedness and that the profile of the reaction center protein itself is asymmetric and spans the membrane.  相似文献   

5.
Electron density profiles of disk membranes isolated from bovine retinal rod outer segments have been determined to 12 A resolution by analysis of the X-ray diffraction from oriented multilayers, in the absence of lipid phase separation. Data were collected on both film and a two-dimensional TV-detector; both detectors yielded identical patterns consisting of relatively sharp lamellar reflections of small mosaic spread. The unit cell repeat was reversibly varied over the range of 143 to 183 A. The diffraction patterns changed dramatically at 150 A; consequently, the low (less than 150 A) and high (greater than 150 A) periodicity data were independently analyzed via a swelling algorithm. The high periodicity data yielded two statistically equivalent phase choices corresponding to two symmetric, but different membrane profiles. The low periodicity data yielded essentially one, characteristically asymmetric profile. These profiles have been modeled with regard to the separate profiles of rhodopsin, lipid and water, subject to the known composition of the isolated disk membranes.  相似文献   

6.
Direct determination of crystallographic phases based on probabilistic of sigma 1 and sigma 2 "triplet" structure invariants has been found to be an effective technique for structure analysis with lamellar x-ray or electron diffraction intensity data from phospholipids. In many cases, nearly all phase values are determined, permitting a structure density (electron density for x-ray diffraction; electrostatic potential for electron diffraction) map to be calculated, which is directly interpretable in terms of known bilayer lipid structure. The major source of error is found to be due to the distortion of observed electron diffraction intensity data by incoherent multiple scattering, which can significantly affect the appearance of the electrostatic potential map, but not the success of the phase determination, as long as the observed Patterson function can be interpreted.  相似文献   

7.
Resonance x-ray diffraction measurements on the lamellar diffraction from oriented multilayers of isolated sarcoplasmic reticulum (SR) membranes containing a small concentration of lanthanide (III) ions (lanthanide/protein molar ratio approximately 4) have allowed us to calculate both the electron density profile of the SR membrane and the separate electron density profile of the resonant lanthanide atoms bound to the membrane to a relatively low spatial resolution of approximately 40 A. Analysis of the membrane electron density profile and modeling of the separate low resolution lanthanide atom profile, using step-function electron density models based on the assumption that metal binding sites in the membrane profile are discrete and localized, resulted in the identification of a minimum of three such binding sites in the membrane profile. Two of these sites are low-affinity, low-occupancy sites identified with the two phospholipid polar headgroup regions of the lipid bilayer within the membrane profile. Up to 20% of the total lanthanide (III) ions bind to these low-affinity sites. The third site has relatively high affinity for lanthanide ion binding; its Ka is roughly an order of magnitude larger than that for the lower affinity polar headgroup sites. Approximately 80% of the total lanthanide ions present in the sample are bound to this high-affinity site, which is located in the "stalk" portion of the "headpiece" within the profile structure of the Ca+2 ATPase protein, approximately 12 A outside of the phospholipid polar headgroups on the extravesicular side of the membrane profile. Based on the nature of our results and on previous reports in the literature concerning the ability of lanthanide (III) ions to function as Ca+2 analogues for the Ca+2 ATPase we suggest that we have located a high-affinity metal binding site in the membrane profile which is involved in the active transport of Ca+2 ions across the SR membrane by the Ca+2 ATPase.  相似文献   

8.
The distribution of calcium in lamellar phases of dipalmitoyllecthin (DPPC) multilayers was directly determined by neutron diffraction and stable isotope substitution of 44Ca for 40Ca. A significant resonance effect on the intensities of the lamellar diffraction pattern was observed for millimolar concentrations of these calcium isotopes. The calcium difference profile indicated that calcium was localized in the phospholipid headgroup region, being excluded from the hydrocarbon core as was water separately determined from the water profile structure obtained by H2O/D2O exchange. A reciprocal space analysis of the difference structure factors indicated that calcium binds preferentially to within 1-2 A of the phosphate moiety of the phospholipid head groups of the DPPC bilayer.  相似文献   

9.
Sequences of X-ray diffraction patterns were obtained from dehydrating, artificially oriented multilayers of isolated, bovine rod outer segment disks. A direct-phase analysis was applied to highly hydrated specimens to determine sequences of low resolution (approx. 30 Å) electron density profiles of the disks as dehydration proceeded. The profiles were found to evolve smoothly as the multilayer lattice simultaneously shrank and became increasingly ordered. The bilayer profiles were largely invariant under dehydration and the evolution of the diffraction consistent with simple decreases in fluid spacings. The specimens were observed to phase separate into characteristic primary and a secondary lattices when the multi-layer became too dehydrated. The small unit cell size of the secondary lattice was suggestive of a lipid phase. Large changes in the diffraction patterns from phase separated specimens were observed upon bleaching of the specimen. The changes were consistent with a reversible disordering of the primary lattice.  相似文献   

10.
Electron density profiles of disk membranes isolated from bovine retinal rod outer segments have been determined to 12 Å resolution by analysis of the X-ray diffraction from oriented multilayers, in the absence of lipid phase separation. Data were collected on both film and a two-dimensional TV-detector; both detectors yielded identical patterns consisting of relatively sharp lamellar reflections of small mosaic spread. The unit cell repeat was reversibly varied over the range of 143 to 183 Å. The diffraction patterns changed dramatically at 150 Å; consequently, the low (less than 150 Å) and high (greater than 150 Å) periodicity data were independently analyzed via a swelling algorithm. The high periodicity data yielded two statistically equivalent phase choices corresponding to two symmetric, but different membrane profiles. The low periodicity data yielded essentially one, characteristically asymmetric profile. These profiles have been modeled with regard to the separate profiles of rhodopsin, lipid and water, subject to the known composition of the isolated disk membranes.  相似文献   

11.
The lipid matrix present in the uppermost layer of the skin, the stratum corneum, plays a crucial role in the skin barrier function. The lipids are organized into two lamellar phases. To gain more insight into the molecular organization of one of these lamellar phases, we performed neutron diffraction studies. In the diffraction pattern, five diffraction orders were observed attributed to a lamellar phase with a repeat distance of 5.4 nm. Using contrast variation, the scattering length density profile could be calculated showing a typical bilayer arrangement. To obtain information on the arrangement of ceramides in the unit cell, a mixture that included a partly deuterated ceramide was also examined. The scattering length density profile of the 5.4-nm phase containing this deuterated ceramide demonstrated a symmetric arrangement of the ceramides with interdigitating acyl chains in the center of the unit cell.  相似文献   

12.
Correlation analysis of gap junction lattice images.   总被引:3,自引:2,他引:1       下载免费PDF全文
Fourier averages of connexon images computed from low-irradiation electron micrographs of isolated negatively stained gap junction domains exhibited differences in stain distribution and connexon orientation. To analyze these polymorphic structures, correlation averaging methods were applied to images from negatively stained and frozen-hydrated specimens. For the negatively stained specimens, separate averages over two subsets of connexons with differing degrees of stain accumulation in the axial channel were obtained. Two populations of connexons with opposite skew orientations were distinguishable within a single junctional domain of a frozen-hydrated specimen. Correlation maps calculated using the left- and right-skewed references showed that the selected connexons tend to locally cluster. Using correlation methods to analyze packing disorder in a typical connexon lattice, we estimated the root-mean-square variation in the nearest neighbor pair separation to be approximately 11% of the lattice constant. Displacements of the connexons relative to each other increased with increasing pair separation in the lattice, rather like a liquid, although long-range orientation order was conserved as in a crystal. These results support the hypothesis that the hexagonal ordering of the connexons results from short-range repulsive forces.  相似文献   

13.
X-ray and neutron diffraction methods provide some information about the distribution of mass in biological membranes and lipid-water systems. Scattering density profiles obtained from these systems, however, usually are not directly interpretable in terms of the relative amounts of chemical constituents (e.g., lipid, protein, and water) as a function of position in the membrane. We demonstrate here that the combined use of x-ray and neutron-scattering profiles, together with information on the total amounts of each of the major membrane components, are sufficient to calculate unambiguously the volume fractions of these components at well-defined regions of the lamellar unit. Three cases are considered: a calculated model membrane pair, dipalmitoylphosphatidylcholine-water multilayers, and rabbit sciatic nerve myelin. For the model system, we discuss the limitations imposed by finite resolution in the diffraction patterns. For the lipid-water multilayers, we calculate water volume fractions in the hydrocarbon tail, lipid headgroup, and interlamellar regions; estimates of these values by various methods are in good agreement with our results. For the nerve myelin, we predict new results for the distribution of protein through the membrane.  相似文献   

14.
New low-angle X-ray diffraction data have been obtained from nerve myelin after rehydration. The X-ray patterns show the first six orders of diffraction of a lamellar repeat unit of about 100 Å. Direct methods of structure analysis have been used to determine uniquely the phases of the first three orders of diffraction. The electron density profile of rehydrated nerve myelin has been obtained on an absolute electron density scale and is compared with the electron density profile of normal nerve myelin at the same resolution of 16–17 Å. Possible electron-density profiles of rehydrated nerve myelin at a resolution of 8 Å are shown.  相似文献   

15.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

16.
Both reaction center protein from the photosynthetic bacteria Rhodopseudomonas sphaeroides and egg phosphatidylcholine can be deuterium labelled; the reaction center protein can be incorporated into the phosphatidylcholine bilayers forming a homogeneous population of unilamellar vesicles. The lipid profile and the reaction center profile within these reconstituted membrane profiles were directly determined to 32 Å resolution using lamellar neutron diffraction from oriented membrane multilayers containing either deuterated or protonated reaction centers, and either deuterated or protonated phosphatidylcholine. The 32 Å resolution reaction center profile shows that the protein spans the membranes, and has an asymmetric mass distribution along the perpendicular to the membrane plane. These results were combined with previously described X-ray diffraction results in order to extend the resolution of the derived reaction center profile to 9 Å.  相似文献   

17.
Gap junction structures: Analysis of the x-ray diffraction data   总被引:2,自引:0,他引:2       下载免费PDF全文
Models for the spatial distribution of protein, lipid and water in gap junction structures have been constructed from the results of the analysis of X-ray diffraction data described here and the electron microscope and chemical data presented in the preceding paper (Caspar, D. L. D., D. A. Goodenough, L. Makowski, and W.C. Phillips. 1977. 74:605-628). The continuous intensity distribution on the meridian of the X-ray diffraction pattern was measured, and corrected for the effects of the partially ordered stacking and partial orientation of the junctions in the X-ray specimens. The electron density distribution in the direction perpendicular to the plane of the junction was calculated from the meridional intensity data. Determination of the interference function for the stacking of the junctions improved the accuracy of the electron density profile. The pair-correlation function, which provides information about the packing of junctions in the specimen, was calculated from the interference function. The intensities of the hexagonal lattice reflections on the equator of the X-ray pattern were used in coordination with the electron microscope data to calculate to the two-dimensional electron density projection onto the plane of the membrane. Differences in the structure of the connexons as seen in the meridional profile and equatorial projections were shown to be correlated to changes in lattice constant. The parts of the junction structure which are variable have been distinguished from the invariant parts by comparison of the X-ray data from different specimens. The combination of these results with electron microscope and chemical data provides low resolution three- dimensional representations of the structures of gap junctions.  相似文献   

18.
Unilamellar vesicles of membranous cytochrome c oxidase have been isolated whose distribution of protein in the membrane plane was predominantly crystalline. The vesicles were collapsed via controlled partial dehydration, resulting, at first, in the formation of unoriented, mostly unstacked, membrane pairs. Further controlled partial dehydration resulted in the formation of oriented multilayers of stacks of membrane pairs, retaining the in-plane crystallinity. The above were monitored by electron microscopy and x-ray diffraction. Analysis of the x-ray diffraction from unoriented, unstacked membrane pairs by two independent methods provided the membrane electron density profile to 30 A resolution.  相似文献   

19.
Synchrotron radiation X-ray scattering experiments were performed on unmyelinated pike olfactory nerves. The difference between the meridional and the equatorial traces of the 2-D spectra yielded the 1-D equatorial intensity of the macromolecular components oriented with respect to the nerve: axonal membranes, microtubules and other cytoskeletal filaments. These 1-D spectra display a diffuse band typical of bilayer membranes and, at small s, a few sharper bands reminiscent of microtubules. All the spectra merge at large s. The intensity of the axonal membrane was determined via a noise analysis of the nerve-dependent spectra, involving also the notion that the thickness of the membrane is finite. The shape of the intensity function indicated that the electron density profile is not centrosymmetric. The knowledge of intensity and thickness paved the way to the electron density profile via an ab initio solution of the phase problem. An iterative procedure was adopted: (i) choose the lattice D of a 1-D pseudo crystal, interpolate the intensity at the points sh = h/D, adopt an arbitrary set of initial phases and compute the profile; (ii) determine the phases corresponding to this profile truncated by the thickness D/2; (iii) repeat the operation with the updated phases until a stable result is obtained. This iterative procedure was carried out for different D-values, starting in each case from randomly generated phases: stable results were obtained in less than 10,000 iterations. Most importantly, for D in the vicinity of 200 A, the overwhelming majority of the profiles were congruent with each other. These profiles were strongly asymmetric and otherwise typical of biological membranes.  相似文献   

20.
D. Groen 《Biophysical journal》2009,97(8):2242-2249
The characteristic 13-nm lamellar phase that is formed by lipids in the outermost layer of the skin, the stratum corneum (SC), is very important for the barrier function of the skin. To gain more insight into the molecular organization of this lamellar phase, we performed small-angle x-ray diffraction (SAXD) using various lipid mixtures mimicking the lipid composition in SC. In the SAXD pattern of each mixture, at least seven diffraction orders were observed, attributed to the lamellar phase with a repeat distance ranging from 12.1 to 13.8 nm. Using the sampling method based on the variation in repeat distance, we selected phase angles for the first six diffraction orders. Using these phase angles for the lamellar phase, a high-resolution electron density distribution could be calculated. Subsequently, from SAXD patterns of isolated SC, the electron density distribution of the lamellar phase was also calculated and appeared to be very similar to that in the lipid mixtures. This demonstrates that the lipid mixtures serve as an excellent model for the lipid organization in SC, not only with respect to the repeat distance, but also in terms of the electron density distribution within the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号