首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bour P  Kim J  Kapitan J  Hammer RP  Huang R  Wu L  Keiderling TA 《Chirality》2008,20(10):1104-1119
A model cyclohexapeptide, cyclo-(Phe-(D)Pro-Gly-Arg-Gly-Asp) was synthesized and its IR and VCD spectra were used as a test of density functional theory (DFT) level predictions of spectral intensities for a peptide with a nonrepeating but partially constricted conformation. Peptide structure and flexibility was estimated by molecular dynamics (MD) simulations and the spectra were simulated using full quantum mechanical (QM) approaches for the complete peptide and for simplified models with truncated side chains. After simulated annealing, the backbone conformation of the ring structure is relatively stable, consisting of a normal beta-turn and a tight loop (no H-bond) which does not vary over short trajectories. Only in quite long MD runs at high temperatures do other conformations appear. MD simulations were carried out for the cyclic peptide in water and in TFE, which match experimental solvents, as well as with and without protonation of the Asp carboxyl group. DFT spectral simulations were made using the annealed structure and were extended to include basis set variation, to determine an optimal computational approach, and solvent simulation with a polarized continuum model (PCM). Stepwise full DFT simulation of spectra was done for various sequences with the same backbone geometry but based on (1) solely Gly residues, (2) Ala substitution except Gly and Pro, and (3) complete sequences with side chains. Additionally, a selection of structures was used to compute IR and VCD spectra with the optimal method to determine structural variation effects. The side chains, especially the Asp-COOH and Arg-NH(2) transitions, had an impact on the computed amide frequencies, IR intensities and VCD pattern. Since experimentally these groups would have little chirality, due to conformational variation, they do not impact the observed VCD spectra. Correcting for frequency shifts, the Ala model for the cyclopeptide gives the clearest representation of the amide VCD. The experimental sign pattern for the amide I' band in D(2)O and also the sharper, more intense amide I VCD band in TFE was seen to some degree in one conformer with Type II' turns, but the data favor a mix of structures.  相似文献   

2.
Choi JH  Hahn S  Cho M 《Biopolymers》2006,83(5):519-536
Using the constrained MD simulation method in combination with quantum chemistry calculation, Hessian matrix reconstruction, and fragmentation approximation methods, we established a computational scheme for numerical simulations of amide I IR absorption, vibrational circular dichroism (VCD), and 2D IR photon echo spectra of peptides in solution. Six different secondary structure peptides, i.e., alpha-helix, 3(10)-helix, pi-helix, antiparallel and parallel beta-sheets, and polyproline II (P(II)), are considered, and the vibrational characteristic features in their linear and nonlinear spectra in the amide I band region are discussed. Isotope-labeling effects on IR and VCD spectra are notable only for alpha- and pi-helical peptides due to the strong vibrational couplings between two nearest neighboring amide I local oscillators. The amplitudes of difference 2D IR spectra are shown to be strongly dependent on both the extent of mode delocalization and the relative orientation of local mode transition dipoles determined by secondary structure.  相似文献   

3.
The DNA duplex d-(CATGGGCCCATG)2 has been studied in solution by FTIR, NMR and CD. The experimental approaches have been complemented by series of large-scale unrestrained molecular dynamics simulation with explicit inclusion of solvent and counterions. Typical proton-proton distances extracted from the NMR spectra and the CD spectra are completely in agreement with slightly modified B-DNA. By molecular dynamics simulation, starting from A-type sugar pucker, a spontaneous repuckering to B-type sugar pucker was observed. Both experimental and theoretical approaches suggest for the dodecamer d-(CATGGGCCCATG)2 under solution conditions puckering of all 2'-deoxyribose residues in the south conformation (mostly C2'-endo) and can exclude significant population of sugars in the north conformation (C3'-endo). NMR, FTIR and CD data are in agreement with a B-form of the dodecamer in solution. Furthermore, the duplex shows a cooperative B-A transition in solution induced by addition of trifluorethanol. This contrasts a recently published crystal structure of the same oligonucleotide found as an intermediate between B- and A-DNA where 23 out of 24 sugar residues were reported to adopt the north (N-type) conformation (C3'-endo) like in A-DNA (Ng, H. L., Kopka, M. L. and Dickerson, R. E., Proc. Natl. Acad. Sci. U S A 97, 2035-2039 (2000)). The simulated structures resemble standard B-DNA. They nevertheless show a moderate shift towards A-type stacking similar to that seen in the crystal, despite the striking difference in sugar puckers between the MD and X-ray structures. This is in agreement with preceding MD reports noticing special stacking features of G-tracts exhibiting a tendency towards the A-type stacking supported by the CD spectra also reflecting the G-tract stacking. MD simulations reveal several noticeable local conformational variations, such as redistribution of helical twist and base pair roll between the central GpC steps and the adjacent G-tract segments, as well as a substantial helical twist variability in the CpA(TpG) steps combined with a large positive base pair roll. These local variations are rather different from those seen in the crystal.  相似文献   

4.
Human carbonic anhydrase II (HCA II) is a zinc-metalloenzyme that catalyzes the reversible interconversion of CO2 and HCO3-. The rate-limiting step of this catalysis is the transfer of a proton between the Zn-bound solvent molecule and residue His64. In order to fully characterize the active site structural features implicated in the proton transfer mechanism, the refined X-ray crystal structure of uncomplexed wild type HCA II to 1.05 A resolution with an Rcryst value of 12.0% and an Rfree value of 15.1% has been elucidated. This structure provides strong clues as to the pathway of the intramolecular proton transfer between the Zn-bound solvent and His64. The structure emphasizes the role of the solvent network, the unique positioning of solvent molecule W2, and the significance of the dual conformation of His64 in the active site. The structure is compared with molecular dynamics (MD) simulation calculations of the Zn-bound hydroxyl/His64+ (charged) and the Zn-bound water/His64 (uncharged) HCA II states. A comparison of the crystallographic anisotropic atomic thermal parameters and MD simulation root-mean-square fluctuation values show excellent agreement in the atomic motion observed between the two methods. It is also interesting that the observed active site solvent positions in the crystal structure are also the most probable positions of the solvent during the MD simulations. On the basis of the comparative study of the MD simulation results, the HCA II crystal structure observed is most likely in the Zn-bound water/His64 state. This conclusion is based on the following observations: His64 is mainly (80%) orientated in an inward conformation; electron density omit maps infer that His64 is not charged in an either inward or outward conformation; and the Zn-bound solvent is most likely a water molecule.  相似文献   

5.
In this study we present the electrochemically induced Fourier transform infrared (FTIR) difference spectra of the Cu(A) center derived from the ba(3)-type cytochrome c oxidase of Thermus thermophilus in the spectral range from 1800 to 500 cm(-1). The mid infrared is dominated by the nu(C[double bond]O) vibrations of the amide I modes at 1688, 1660, and 1635 cm(-1), reflecting the redox-induced perturbation of the predominantly beta-sheet type structure. The corresponding amide II signal is found at 1528 cm(-1). In the lower frequency range below 800 cm(-1), modes from amino acids liganding the Cu(A) center are expected. On the basis of the absorbance spectrum of the isolated amino acids, methionine is identified as an important residue, displaying C-S vibrations at these frequencies. This spectral range was previously disregarded by protein IR spectroscopists, mainly due to the strong absorbance of the solvent, H(2)O. With an optimized setup, however, IR is found suitable for structure/function studies on proteins.  相似文献   

6.
7.
Molecular dynamics (MD) simulations on the complexes of glucoamylase II (471) from Aspergillus awamori var. X100 with two powerful inhibitors, 1-deoxynojirimycin and (+)-lentiginosine, have been performed, in order to build a model for these complexes in solution and to clarify the structure-activity relationship. MD calculations were carried out for 105 ps, over a 15 Å sphere centered on the inhibitors. A 8 Å residue-based cut-off was used, and the calculations were performed with explicit inclusion of solvent molecules. The MD structure of the complex 1-deoxynojirimycin-glucoamylase shows only minor deviations from the available X-ray structure. The MD structure of the complex of (+)-lentiginosine-glucoamylase, obtained by docking the inhibitor into the active site, suggests us a suitable orientation for the molecule into the enzyme cavity, which can rationalize the high inhibition activity found for (+)-lentiginosine towards amyloglucosidase from A. niger.  相似文献   

8.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H(2)), but little is known about the diffusion of H(2) toward the active site. Here we analyze pathways for H(2) permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H(2) easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H(2) molecules that reach the active site made their approach from the side of the Ni ion. H(2) is able to reach distances of <4 A from the active site, although after 6 A permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H(2) inside the protein and at lower distances from the active site. This valine can be a control point in the H(2) access to the active center.  相似文献   

9.
The conformation and amide hydrogen exchangeability of the hydrophobic peptide Lys2-Gly-Leu24-Lys2-Ala-amide were studied by Fourier transform infrared spectroscopy. In these studies information on the secondary structure of the peptide was obtained from an examination of the contours of both the amide I and amide II absorption bands. The conformationally sensitive amide I and amide II regions of the infrared spectra suggest that the peptide is predominantly alpha-helical and that it contains some non-alpha-helical structures which are probably in an extended conformation. Studies of the exchangeability of the amide protons of the peptide indicate that there are two populations of amide protons which differ markedly with respect to their exchangeability with the bulk solvent phase, whether the peptide is dissolved in methanol or dispersed in hydrated lipid bilayers. One population of amide protons is very readily exchangeable, and our data suggest that it arises primarily but not exclusively from the extended regions of the peptide. The other population exchanges very slowly with the bulk solvent and appears to originate entirely from the alpha-helical domain of the peptide. This latter population is virtually unexchangeable when the peptide is dispersed in hydrated phosphatidylcholine bilayers but can be largely exchanged when the peptide is solubilized with methanol. We suggest that this slowly exchanging population of amide protons arises from the central part of the hydrophobic polyleucine core which forms a very stable alpha-helix that would be deeply buried in the hydrophobic domain of hydrated lipid bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical structure and receptor docking mechanism are still not well understood. The conformational dynamics of this neuron peptide in liquid water are studied here by using all-atom molecular dynamics (MD) and implicit water Langevin dynamics (LD) simulations with AMBER potential functions and the three-site transferable intermolecular potential (TIP3P) model for water. To achieve the same simulation length in physical time, the full MD simulations require 200 times as much CPU time as the implicit water LD simulations. The solvent hydrophobicity and dielectric behavior are treated in the implicit solvent LD simulations by using a macroscopic solvation potential, a single dielectric constant, and atomic friction coefficients computed using the accessible surface area method with the TIP3P model water viscosity as determined here from MD simulations for pure TIP3P water. Both the local and the global dynamics obtained from the implicit solvent LD simulations agree very well with those from the explicit solvent MD simulations. The simulations provide insights into the conformational restrictions that are associated with the bioactivity of the opiate peptide dermorphin for the delta-receptor.  相似文献   

11.
Structure and dynamics of calmodulin in solution.   总被引:5,自引:3,他引:2       下载免费PDF全文
To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides.  相似文献   

12.
The solution structure of a hexapeptide, cyclo(Gln-Trp-Phe-Gly-Leu-Met), which is a selective NK-2 antagonist, has been studied by a combination of two-dimensional nmr and molecular dynamics (MD) techniques. The simulation based on nmr and MD data resulted in the convergence to a family of structures. Free molecular dynamics for 50 ps in the presence of DMSO solvent molecules shows that the structure is energetically stable. One intramolecular hydrogen bond between the amide proton of Gin and the carbonyl oxygen of Gly was revealed. This result is consistent with the results from the measurement of the temperature coefficient of the amide protons. The extent of intermolecular hydrogen bonding between the amide protons of the peptide and DMSO was also revealed by the free MD simulation. The resulting structure of the cyclic peptide contains a variation type I′ β-turn in the Gly-Leu-Met-Gln segment. Comparison of the structure of this peptide with that of other NK-2 antagonist cyclic hexapeptides was made, and the activity of cyclic antagonists appears to be inversely related to the conformational rigidity of the cyclic peptides. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Fourier-transformed infrared spectroscopy (FTIR) and molecular dynamics (MD) simulation results are presented to support our hypothesis that the conformation and the oligomeric state of the HIV-1 gp41 fusion domain or fusion peptide (gp41-FP) are determined by the membrane surface area per lipid (APL), which is affected by the membrane curvature. FTIR of the gp41-FP in the Aerosol-OT (AOT) reversed micellar system showed that as APL decreases from approximately 50 to 35 A2 by varying the AOT/water ratio, the FP changes from the monomeric alpha-helical to the oligomeric beta-sheet structure. MD simulations in POPE lipid bilayer systems showed that as the APL decreases by applying a negative surface tension, helical monomers start to unfold into turn-like structures. Furthermore, an increase in the applied lateral pressure during nonequilibrium MD simulations favored the formation of beta-sheet structure. These results provide better insight into the relationship between the structures of the gp41-FP and the membrane, which is essential in understanding the membrane fusion process. The implication of the results of this work on what is the fusogenic structure of the HIV-1 FP is discussed.  相似文献   

14.
We present an improved technique for estimating protein secondary structure content from amide I and amide III band infrared spectra. This technique combines the superposition of reference spectra of pure secondary structure elements with simultaneous aromatic side chain, water vapor, and solvent background subtraction. Previous attempts to generate structural reference spectra from a basis set of reference protein spectra have had limited success because of inaccuracies arising from sequential background subtractions and spectral normalization, arbitrary spectral band truncation, and attempted resolution of spectroscopically degenerate structure classes. We eliminated these inaccuracies by defining a single mathematical function for protein spectra, permitting all subtractions, normalizations, and amide band deconvolution steps to be performed simultaneously using a single optimization algorithm. This approach circumvents many of the problems associated with the sequential nature of previous methods, especially with regard to removing the subjectivity involved in each processing step. A key element of this technique was the calculation of reference spectra for ordered helix, unordered helix, sheet, turns, and unordered structures from a basis set of spectra of well-characterized proteins. Structural reference spectra were generated in the amide I and amide III bands, both of which have been shown to be sensitive to protein secondary structure content. We accurately account for overlaps between amide and nonamide regions and allow different structure types to have different extinction coefficients. The agreement between our structure estimates, for proteins both inside and outside the basis set, and the corresponding determinations from X-ray crystallography is good.  相似文献   

15.
We report the results of four new molecular dynamics (MD) simulations on the DNA duplex of sequence d(CGCGAATTCGCG)2, including explicit consideration of solvent water, and a sufficient number of Na+ counterions to provide electroneutrality to the system. Our simulations are configured particularly to characterize the latest MD models of DNA, and to provide a basis for examining the sensitivity of MD results to the treatment of boundary conditions, electrostatics, initial placement of solvent, and run lengths. The trajectories employ the AMBER 4.1 force field. The simulations use particle mesh Ewald summation for boundary conditions, and range in length from 500 ps to 5.0 ns. Analysis of the results is carried out by means of time series for conformationalm, helicoidal parameters, newly developed indices of DNA axis bending, and groove widths. The results support a dynamically stable model of B-DNA for d(CGCGAATTCGCG)2 over the entire length of the trajectory. The MD results are compared with corresponding crystallographic and NMR studies on the d(CGCGAATTCGCG)2 duplex, and placed in the context of observed behavior of B-DNA by comparisons with the complete crystallographic data base of B-form structures. The calculated distributions of mobile solvent molecules, both water and counterions, are displayed. The calculated solvent structure of the primary solvation shell is compared with the location of ordered solvent positions in the corresponding crystal structure. The results indicate that ordered solvent positions in crystals are roughly twice as structured as bulk water. Detailed analysis of the solvent dynamics reveals evidence of the incorporation of ions in the primary solvation of the minor groove B-form DNA. The idea of localized complexation of otherwise mobile counterions in electronegative pockets in the grooves of DNA helices introduces an additional source of sequence-dependent effects on local conformational, helicoidal, and morphological structure, and may have important implications for understanding the functional energetics and specificity of the interactions of DNA and RNA with regulatory proteins, pharmaceutical agents, and other ligands.  相似文献   

16.
We have carried out 1 nanosecond (ns) Molecular Dynamics (MD) simulations of the drug Y3 (4-acetylamino-5-hydroxynaphthalene- 2, 7-disulfonic acid) complexed with catalytic domain of Avian sarcoma virus Integrase (ASV-IN), both in vacuum and in the presence of explicit solvent. Starting models were obtained on the basis of PDB co- ordinates (1A5X) of ASV-IN-Y3 complex. Mn(2+) cation was present in the active site. To neutralize the positive charge in the presence of explicit solvent, eight Cl(-)anions were added. Energy Minimization (EM) and MD simulations, for both the systems, were carried out using Sander's module of AMBER5.0 with all atom force field. We also carried out 1 ns MD simulation on two flexible loops--L1 (Gly54-Gln62) and L2 (Trp138-Met155) playing crucial role in interaction of IN with the drug, under differing environmental conditions (vacuum, aqueous and organic solvent methanol). Comparison of the conformational changes in the loops, monomer and dimer is presented in the paper. Our results showed that the conformation of the loop region was closest to crystallographic data in case of monomer and constrained loops in aqueous environment. However, the dimer in vacuum was more stable than monomer. The beta sheet structure of the monomer in aqueous environment was unstable. Latter also took long time for equilibration. The box formed by loops L1 and L2 from two sub units (IINA and INB) of the dimer satisfies prerequisites for ligand recognition site and seems to be the functional biological unit.  相似文献   

17.
We have used a combination of FTIR, VCD, ECD, Raman, and NMR spectroscopies to probe the solution conformations sampled by H-(AAKA)-OH by utilizing an excitonic coupling model and constraints imposed by the 3JCalphaHNH coupling constants of the central residues to simulate the amide I' profile of the IR, isotropic Raman, anisotropic Raman, and VCD spectra in terms of a mixture of three conformations, i.e., polyproline II, beta-strand and right-handed helical. The representative coordinates of the three conformations were obtained from published coil libraries. Alanine was found to exhibit PPII fractions of 0.60 or greater, mixed with smaller fractions of helices and beta-strand conformations. Lysine showed no clear conformational propensity in that it samples polyproline II, beta-strand, and helical conformations with comparable probability. This is at variance with results obtained earlier for ionized polylysine, which suggest a high polyproline II propensity. We reanalyzed previously investigated tetra- and trialanine by combining published vibrational spectroscopy data with 3JCalphaHNH coupling constants and obtained again blends dominated by PPII with smaller admixtures of beta-strand and right-handed helical conformations. The polyproline II propensity of alanine was found to be higher in tetraalanine than in trialanine. For all peptides investigated, our results rule out a substantial population of turn-like conformations. Our results are in excellent agreement with MD simulations on short alanine peptides by Gnanakaran and Garcia [(2003) J. Phys. Chem. B 107, 12555-12557] but at variance with multiple MD simulations particularly for the alanine dipeptide.  相似文献   

18.
This work describes molecular dynamics (MD) simulations in aqueous media for the complex of the homotetrameric urate oxidase (UOX) from Aspergillus flavus with xanthine anion ( 5 ) in the presence of dioxygen (O2). After 196.6 ns of trajectory from unrestrained MD, a O2 molecule was observed leaving the bulk solvent to penetrate the enzyme between two subunits, A/C. From here, the same O2 molecule was observed migrating, across subunit C, to the hydrophobic cavity that shares residue V227 with the active site. The latter was finally attained, after 378.3 ns of trajectory, with O2 at a bonding distance from 5 . The reverse same O2 pathway, from 5 to the bulk solvent, was observed as preferred pathway under random acceleration MD (RAMD), where an external, randomly oriented force was acting on O2. Both MD and RAMD simulations revealed several cavities populated by O2 during its migration from the bulk solvent to the active site or backwards. Paying attention to the last hydrophobic cavity that apparently serves as O2 reservoir for the active site, it was noticed that its volume undergoes ample fluctuations during the MD simulation, as expected from the thermal motion of a flexible protein, independently from the particular subunit and no matter whether the cavity is filled or not by O2.  相似文献   

19.
Vibrational circular dichroism (VCD) spectroscopic features of type II beta-turns were characterized previously, but, criteria for differentiation between beta-turn types had not been established yet. Model tetrapeptides, cyclized through a disulfide bridge, were designed on the basis of previous experimental results and the observed incidence of amino acid residues in the i + 1 and i + 2 positions in beta-turns, to determine the features of VCD spectra of type I and II beta-turns. The results were correlated with electronic circular dichroism (ECD) spectra and VCD spectra calculated from conformational data obtained by molecular dynamics (MD) simulations. All cyclic tetrapeptides yielded VCD signals with a higher frequency negative and a lower frequency positive couplet with negative lobes overlapping. MD simulations confirmed the conformational homogeneity of these peptides in solution. Comparison with ECD spectroscopy, MD, and quantum chemical calculation results suggested that the low frequency component of VCD spectra originating from the tertiary amide vibrations could be used to distinguish between types of beta-turn structures. On the basis of this observation, VCD spectroscopic features of type II and VIII beta-turns and ECD spectroscopic properties of a type VIII beta-turn were suggested. The need for independent experimental as well as theoretical investigations to obtain decisive conformational information was recognized.  相似文献   

20.
Here we report the development of a new neural network based approach for rapid quantification of protein secondary structure from Fourier transform infrared (FTIR) spectra of proteins. A technique for efficiently reducing the amount of spectral data by almost 90% is suggested to facilitate faster neural network analysis. Additionally, an automatic procedure is introduced for selecting only those regions within the amide I band of protein FTIR spectra, which can be best related to secondary structure contents by subsequent neural network analysis. Based on a given reference set of FTIR spectra from proteins with known secondary structure, a subset of merely 29 out of 101 amide I absorbance values could be identified, which lead to an improved prediction accuracy. The average prediction accuracy achieved for helix, sheet, turn, bend, and other is 4.96% which is better than that achieved by alternative methods that have been previously reported indicating the significant potential of this approach. Our suggested automatic amide I frequency selection procedure may be easily extended to identify promising regions from spectral data recorded by other spectroscopic techniques, like for example circular dichroism spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号