首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural basis for recruitment of RILP by small GTPase Rab7   总被引:1,自引:0,他引:1  
Wu M  Wang T  Loh E  Hong W  Song H 《The EMBO journal》2005,24(8):1491-1501
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.  相似文献   

2.
Ypt/Rabs are Ras-related GTPases that function as key regulators of intracellular vesicular trafficking. Their slow intrinsic rates of GTP hydrolysis are catalyzed by GTPase-activating proteins (GAPs). Ypt/Rab-GAPs constitute a family of proteins that contain a TBC (Tre-2/Bub2/Cdc16) domain. Only three of the 51 family members predicted in the human genome are confirmed Ypt/Rab-GAPs. Here, we report the identification and characterization of a novel mammalian Ypt/Rab-GAP, TBC domain family, member 15 (TBC1D15). TBC1D15 is ubiquitously expressed and localized predominantly to the cytosol. The TBC domain of TBC1D15 exhibits relatively high homology with that of Gyp7p, a yeast Ypt/Rab-GAP. Furthermore, TBC1D15 stimulates the intrinsic GTPase activity of Rab7, and to a lesser extent Rab11, but is essentially inactive towards Rab4 or Rab6. These data increase the number of mammalian TBC domain family members with demonstrated Rab-GAP activity to four, and suggest that TBC1D15 may be involved in Rab7-mediated late endosomal trafficking.  相似文献   

3.
Ypt/Rab proteins of the Ras superfamily are regulators of protein transport in exo- and endocytosis. Like Ras and Rho proteins, they have a slow intrinsic GTPase activity that can be accelerated by several orders of magnitude by GTPase-activating proteins (GAP). Here we describe a new member of a family of Ypt/Rab-specific GAPs, Msb4p/Gyp4p, that shares with other Gyp family members significant homology in the catalytic domain, recently identified in Gyp1p and Gyp7p. Purified Msb4p/Gyp4p acts primarily on Sec4p, Ypt6p and Ypt7p and might have a role in polarized secretion.  相似文献   

4.
Small GTPases of the Ypt/Rab family are regulators of vesicular protein trafficking in exo-and endocytosis. GTPase-activating proteins (GAP) play an important role as down regulators of GTPases. We here report the molecular cloning of a novel GAP-encoding gene (GYP7, for GAP for Ypt7) by high expression from a Saccharomyces cerevisiae genomic library. The GYP7 gene encodes a hydrophilic protein with a molecular mass of 87 kDa. Comparison of its primary sequence with that of the three other known GAPs for transport GTPases, the yeast Gyp6 and Gyp1 proteins and the Rab3A-GAP from rat brain, shows similarity between the yeast GAPs only. Like GYP6 and GYP1, GYP7 is not essential for yeast cell viability. Gyp7p was able to most effectively accelerate the intrinsic GTPase activity of Ypt7p. It was also active, but to a lesser extent, on Ypt31p, Ypt32p and Ypt1p. Ypt6p, Sec4p and the human H-Ras protein did not serve as substrates. We also report the identification and cloning of a gene from the dimorphic yeast Yarrowia lipolytica that encodes a protein whose primary structure and biochemical activity are significantly related to those of Gyp7p from baker's yeast.  相似文献   

5.
The yeast myosin light chain 1 (Mlc1p) belongs to a branch of the calmodulin superfamily and is essential for vesicle delivery at the mother-bud neck during cytokinesis due to is ability to bind to the IQ motifs of the class V myosin Myo2p. While calcium binding to calmodulin promotes binding/release from the MyoV IQ motifs, Mlc1p is unable to bind calcium and the mechanism of its interaction with target motifs has not been clarified. The presence of Mlc1p in a complex with the Rab/Ypt Sec4p and with Myo2p suggests a role for Mlc1p in regulating Myo2p cargo binding/release by responding to the activation of Rab/Ypt proteins. Here we show that GTP or GTPgammaS potently stimulate Mlc1p interaction with Myo2p IQ motifs. The C-terminus of the Rab/Ypt GEF Sec2p, but not Sec4p activation, is essential for this interaction. Interestingly, overexpression of constitutively activated Ypt32p, a Rab/Ypt protein that acts upstream of Sec4p, stimulates Mlc1p/Myo2p interaction similarly to GTP although a block of Ypt32 GTP binding does not completely abolish the GTP-mediated Mlc1p/Myo2p interaction. We propose that Mlc1p/Myo2p interaction is stimulated by a signal that requires Sec2p and activation of Ypt32p.  相似文献   

6.
The Rab/Ypt small G proteins are essential for intracellular vesicle trafficking in mammals and yeast. The vesicle-docking process requires that Ypt proteins are located in the vesicle membrane. C-terminal geranylgeranyl anchors mediate the membrane attachment of these proteins. The Rab escort protein (REP) is essential for the recognition of Rab/Ypt small G proteins by geranylgeranyltransferase II (GGTase II) and for their delivery to acceptor membranes. What effect an alteration in the levels of prenylated Rab/Ypt proteins has on vesicle transport or other cellular processes is so far unknown. Here, we report the characterization of a yeast REP mutant, mrs6-2, in which reduced prenylation of Ypt proteins occurs even at the permissive temperature. A shift to the restrictive temperature does not alter exponential growth during the first 3 h. The amount of Sec4p, but not Ypt1p, bound to vesicle membranes is reduced 2.5 h after the shift compared with wild-type or mrs6-2 cells incubated at 25 degrees C. In addition, vesicles fail to be polarized towards the bud and small budded binucleate cells accumulate at this time point. Growth in 1 M sorbitol or overexpression of MLC1, encoding a myosin light chain able to bind the unconventional type V myosin Myo2, or of genes involved in cell wall maintenance, such as SLG1, GFA1 and LRE1, suppresses mrs6-2 thermosensitivity. Our data suggest that, at least at high temperature, a critical minimal level of Ypt protein prenylation is required for maintaining vesicle polarization.  相似文献   

7.
Small guanine triphosphatases (GTPases) of the Rab family are key regulators of membrane trafficking events between the various subcellular compartments in eukaryotic cells. Rab7 is a conserved protein required in the late endocytic pathway and in lysosome biogenesis. A Schizosaccharomyces pombe ( S. pombe ) homolog of Rab7, Ypt7, is necessary for trafficking from the endosome to the vacuole and for homotypic vacuole fusion. Here, we identified and characterized a second fission yeast Rab7 homolog, Ypt71. Ypt71 is localized to the vacuolar membrane. Cells deleted for ypt71 + exhibit normal growth rates and morphology. Interestingly, a ypt71 null mutant contains large vacuoles in contrast with the small fragmented vacuoles found in the ypt7 null mutant. Furthermore, the ypt71 mutation does not enhance or alleviate the temperature sensitivity or vacuole fusion defect of ypt7 Δ cells. Like ypt7 Δ cells, overexpression of ypt71 + caused fragmentation of vacuoles and inhibits vacuole fusion under hypotonic conditions. Thus, the two S. pombe Rab7 homologs act antagonistically in regulating vacuolar morphology. Analysis of a chimeric Ypt7/Ypt71 protein showed that Rab7-directed vacuole dynamics, fusion versus fission, largely depends on the medial region of the protein, including a part of RabSF3/α3-L7.  相似文献   

8.
The product of the human Tre2 oncogene is structurally related to the Ypt/Rab GTPase-activating proteins (Ypt/Rab GAPs). Particularly, the oncoprotein shares with the yeast proteins Msb3p and Msb4p, and with the human protein RN-tre the highly conserved TBC domain, forming the catalytically active domain of Ypt/Rab GAPs. Yet, the Tre2 oncogene seems to encode a nonfunctional Rab GAP. As regions flanking the TBC domain may be crucial for catalytic activity, regions located N- and C-terminally with respect to this domain were explored. For this, chimeric proteins created by sequence exchanges between the Tre2 oncoprotein and RN-tre were tested for their ability to replace functionally the Msb3p and Msb4p proteins in double-mutant yeast cells. These complementation experiments revealed, in addition to the TBC domain, a second Tre2 region involved in the oncoprotein's lack of GAP activity: a 93-aa region flanking the TBC domain on the C-terminal side.  相似文献   

9.
Rab/Ypt GTPases are key regulators of membrane trafficking and together with SNARE proteins mediate selective fusion of vesicles with target compartments. A family of GTPase-activating enzymes (GAPs) specific for Rab/Ypt GTPases has been discovered, but little is known about their function and substrate specificity in vivo. Here we show that the GAP activity of Gyp1p, a yeast member of this family, is specifically required for recycling of the SNARE Snc1p and the membrane dye FM4-64, implying that inactivation of a Rab/Ypt GTPase may be necessary for recycling of membrane material. Interestingly, recycling of GFP-Snc1p in gyp1 Delta cells is partially restored by reducing the activity of Ypt1p. Moreover, GFP-Snc1p accumulated intracellularly in wild-type cells expressing a GTP-locked, mutant form of Ypt1p (Ypt1p-Q67L), suggesting that GTP hydrolysis of Ypt1p is essential for recycling. Ypt6p is known to be required for the fusion of recycling vesicles to the late Golgi compartment. Interestingly, the deletions of GYP1 and YPT6 were synthetic lethal, raising the possibility that at least two distinct pathways are involved in recycling of membrane material.  相似文献   

10.
Vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae missort and secrete vacuolar hydrolases. The gene affected in one of these mutants, VPS21, encodes a member of the Sec4/Ypt/Rab family of small GTPases. Rab proteins play an essential role in vesicle-mediated protein transport. Using both yeast two-hybrid assays and chemical cross-linking, we have identified another VPS gene product, Vps9p, that preferentially interacts with a mutant form of Vps21p-S21N that binds GDP but not GTP. In vitro purified Vps9p was found to stimulate GDP release from Vps21p in a dose-dependent manner. Vps9p also stimulated GTP association as a result of facilitated GDP release. However, Vps9p did not stimulate guanine nucleotide exchange of GTP-bound Vps21p or GTP hydrolysis. We tested the ability of Vps9p to stimulate the intrinsic guanine nucleotide exchange activity of Rab5, which is a mammalian sequence homologue of Vps21p, and Ypt7p, which is another yeast Rab protein involved in vacuolar protein transport. Rab5, but not Ypt7p was responsive to Vps9p, which indicates that Vps9p recognizes sequence variation among Rab proteins. We conclude that Vps9p is a novel guanine nucleotide exchange factor that is specific for Vps21p/Rab5. Since there are no obvious Vps9p sequence homologues in yeast, Vps9p may also possess unique regulatory functions required for vacuolar protein transport.  相似文献   

11.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex.  相似文献   

12.
The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.  相似文献   

13.
A family of related proteins in yeast Saccharomyces cerevisiae is known to have in vitro GTPase-activating protein activity on the Rab GTPases. However, their in vivo function remains obscure. One of them, Gyp1p, acts on Sec4p, Ypt1p, Ypt7p, and Ypt51p in vitro. Here, we present data to reveal its in vivo substrate and the role that it plays in the function of the Rab GTPase. Red fluorescent protein-tagged Gyp1p is concentrated on cytoplasmic punctate structures that largely colocalize with a cis-Golgi marker. Subcellular fractionation of a yeast lysate confirmed that Gyp1p is peripherally associated with membranes and that it cofractionates with Golgi markers. This localization suggests that Gyp1p may only act on Rab GTPases on the Golgi. A gyp1Delta strain displays a growth defect on synthetic medium at 37 degrees C. Overexpression of Ypt1p, but not other Rab GTPases, strongly inhibits the growth of gyp1Delta cells. Conversely, a partial loss-of-function allele of YPT1, ypt1-2, can suppress the growth defect of gyp1Delta cells. Furthermore, deletion of GYP1 can partially suppress growth defects associated with mutants in subunits of transport protein particle complex, a complex that catalyzes nucleotide exchange on Ypt1p. These results establish that Gyp1p functions on the Golgi as a negative regulator of Ypt1p.  相似文献   

14.
A previous report described lipid mixing of reconstituted proteoliposomes made using lipid mixtures that mimic the composition of yeast vacuoles. This lipid mixing required SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor)-attachment protein] receptor} proteins, Sec18p and Sec17p (yeast NSF and α-SNAP) and the HOPS (homotypic fusion and protein sorting)-Class C Vps (vacuole protein sorting) complex, but not the vacuolar Rab GTPase Ypt7p. The present study investigates the activity of Ypt7p in proteoliposome lipid mixing. Ypt7p is required for the lipid mixing of proteoliposomes lacking cardiolipin [1,3-bis-(sn-3'-phosphatidyl)-sn-glycerol]. Omission of other lipids with negatively charged and/or small head groups does not cause Ypt7p dependence for lipid mixing. Yeast vacuoles made from strains disrupted for CRD1 (cardiolipin synthase) fuse to the same extent as vacuoles from strains with functional CRD1. Disruption of CRD1 does not alter dependence on Rab GTPases for vacuole fusion. It has been proposed that the recruitment of the HOPS complex to membranes is the main function of Ypt7p. However, Ypt7p is still required for lipid mixing even when the concentration of HOPS complex in lipid-mixing reactions is adjusted such that cardiolipin-free proteoliposomes with or without Ypt7p bind to equal amounts of HOPS. Ypt7p therefore must stimulate membrane fusion by a mechanism that is in addition to recruitment of HOPS to the membrane. This is the first demonstration of such a stimulatory activity--that is, beyond bulk effector recruitment--for a Rab GTPase.  相似文献   

15.
Monomeric GTPases of the Ras superfamily have a very slow intrinsic GTPase activity which is accelerated by specific GTPase-activating proteins. In contrast to Ras- and Rho-specific GTPase-activating proteins (GAPs) that have been studied in great detail, little is known about the functioning of GAPs specific for Ypt/Rab transport GTPases. We have identified two novel Ypt/Rab-GAPs because of their sequence relatedness to the three known GAPs Gyp1p, Gyp6p, and Gyp7p. Mdr1/Gyp2p is an efficient GAP for Ypt6p and Sec4p, whereas Msb3/Gyp3p is a potent GAP for Sec4p, Ypt6p, Ypt51p, Ypt31/Ypt32p, and Ypt1p. Although the affinity of Msb3/Gyp3p for its preferred substrate Sec4p is low (K(m) = 154 microM), it accelerates the intrinsic GTPase activity of Sec4p 5 x 10(5)-fold. Msb3/Gyp3p appears to be functionally linked to Cdc42p-regulated pathway(s). The results demonstrate that in yeast there is a large family of Ypt/Rab-GAPs, members of which discriminate poorly between GTPases involved in regulating different steps of exo- and endocytic transport routes.  相似文献   

16.
Cell polarity involves transport of specific membranes and macromolecules at the right time to the right place. In budding yeast, secretory vesicles are transported by the myosin-V Myo2p to sites of cell growth. We show that phosphatidylinositol 4-phosphate (PI4P) is present in late secretory compartments and is critical for their association with, and transport by, Myo2p. Further, the trans-Golgi network Rab Ypt31/32p and secretory vesicle Rab Sec4p each bind directly, but distinctly, to Myo2p, and these interactions are also required for secretory compartment transport. Enhancing the interaction of Myo2p with PI4P bypasses the requirement for interaction with Ypt31/32p and Sec4p. Together with additional genetic data, the results indicate that Rab proteins and PI4P collaborate in the association of secretory compartments with Myo2p. Thus, we show that a coincidence detection mechanism coordinates inputs from PI4P and the appropriate Rab for secretory compartment transport.  相似文献   

17.
The Rab escort protein (REP) is an essential component of the heterotrimeric enzyme Rab geranylgeranyl transferase that modifies the carboxy-terminal cysteines of the Ras-like small G proteins belonging to the Rab/Ypt family. Deletions in the human CHM locus, encoding one of the two REPs known in humans, result in a retinal degenerative syndrome called choroideremia. The only known yeast homologue of the choroideremia gene product is encoded by an essential gene called MRS6. Besides three structurally conserved regions (SCRs) previously detected in the amino-terminal half of REPs and RabGDIs, three other regions in the carboxy-terminal domain (RCR 1-3) are here identified as being characteristic of REPs alone. We have performed the first mutational analysis of a REP protein to experimentally define the regions functionally important for Rab/Ypt protein binding, making use of the genetic system of the yeast Saccharomyces cerevisiae. This analysis has shown that the SCRs are necessary but not sufficient for Ypt1p binding by the yeast REP, the carboxy-terminal region also being required.  相似文献   

18.
The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.  相似文献   

19.
T J Tan  P Vollmer  D Gallwitz 《FEBS letters》1991,291(2):322-326
Two GTPase-activating proteins of apparent molecular mass of 100 kDa and 30 kDa have been partially purified from porcine liver cytosol using mammalian Ypt1/Rab1 protein as substrate. Both proteins act most efficiently on Ypt1/Rab1p, but are inactive with H-Ras p21. From the budding yeast Saccharomyces cerevisiae, a cytosolic 40 kDa yptGAP was partially purified. It accelerates the intrinsic GTPase activity of wild-type Ypt1p but not of H-Ras p21 or a mutant ypt1p with an amino acid substitution of the effector domain which renders the protein functionally inactive in yeast cells.  相似文献   

20.
The regulation of membrane traffic involves the Rab family of Ras-related GTPases, of which there are a total of 11 members in the yeast Saccharomyces cerevisiae. Previous work has identified PRA1 as a dual prenylated Rab GTPase and VAMP2 interacting protein [Martinic et al. (1999) J. Biol. Chem. 272, 26991-26998]. In this study we demonstrate that the yeast counterpart of PRA1 interacts with Rab proteins and with Yip1p, a membrane protein of unknown function that has been reported to interact specifically with the Rab proteins Ypt1p and Ypt31p. Yeast Pra1p/Yip3p is a factor capable of biochemical interaction with a panel of different Rab proteins and does not show in vitro specificity for any particular Rab. The interactions between Pra1p/Yip3p and Rab proteins are dependent on the presence of the Rab protein C-terminal cysteines and require C-terminal prenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号