首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

2.
Kourie JI 《Plant physiology》1994,106(2):651-660
In voltage-clamp experiments, a two-pulse procedure was used to investigate the ionic currents underlying the action potential in Chara inflata. A prepulse hyperpolarized the membrane from a resting potential of about -100 to -200 mV. The prepulse was followed by a second pulse that changed the potential difference (p.d.) to -100 mV and less negative values in steps of 20 mV. This two-pulse procedure induces action potentials that have a reproducible time course, which is essential for any comparative investigation of the action potential. The two-pulse procedure reveals that in the charophyte C. inflata the electric current flowing across the cell membranes during positive voltage-clamp steps from the resting p.d. consists of a leak current flowing from the start of the pulse, followed by a transient inward-going current, Ii, commencing after a delay, and preceding a delayed transient outward current, Io. The characteristics of the current components and their response to various ion channel blockers and ionic treatments suggest that: (a) Ii, which is blocked by the external application of 9-anthracenecarboxylic acid, is carried by Cl- and (b) Io, which is blocked by the external application of the organic anions tetraethylammonium (TEA+) and nonyltriethylammonium, is carried mainly by K+. The magnitude and behavior of these K+ and Cl- currents could be modified by changes in the external concentration of CaCl2, LiCl, or NaCl but not sorbitol. Hence, it is concluded that NaCl-enhanced transient inward Cl- current, Ii, is due to ionic effects of NaCl rather than to its osmotic effects. The modification of the K+ current, Io, either by changing external K+ concentrations or by blocking the current with TEA+, also alters the Cl- currents Ii.  相似文献   

3.
1. The left upper quadrant neurons L2-L6 in the abdominal ganglion of Aplysia californica were voltage clamped in order to examine effects of acetylcholine on voltage-dependent Ca and Ca-dependent K currents. 2. "Puffed" application of 10-100 microM acetylcholine reduced both the early inward and late outward phases of the current elicited by depolarizing voltage steps. An identical effect of the peptide FMRFamide was previously found to result from a suppression of the Ca and Ca-dependent K currents. 3. This effect of acetylcholine was obscured by the simultaneous activation of a previously described K current resembling the "S" current. Extracellular tetraethylammonium (TEA) and 4-aminopyridine could not be used to eliminate this current, because both compounds also appeared to block the acetylcholine receptor mediating the putative suppression of Ca and Ca-dependent K currents. 4. The acetylcholine-induced "S"-like and other K currents could, however, be reduced or eliminated by injection of TEA+ or Cs+ into the cell, replacement of extracellular Ca2+ with Ba2+, and by shifting the K+ equilibrium potential so as to null K currents at the potential used to record Ca current, revealing in each case a partial (10-40%) suppression of the Ca (or Ba) current by acetylcholine. 5. The reduction of the outward phase of depolarization-activated current was confirmed to represent suppression of the Ca-dependent K current by acetylcholine. This effect was indirect, secondary to the suppression of Ca current, since acetylcholine had no effect on Ca-dependent K current elicited by direct injection of Ca2+ into the cell. 6. Activation of the "S"-like K current and suppression of the Ca current by FMRFamide are likely to be important in its proposed role as an agent of presynaptic inhibition in Aplysia. Since acetylcholine has identical effects, it too may have such a function.  相似文献   

4.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

5.
The model proposed for external TEA block of Shaker K+ channels predicts a proportional relationship between TEA sensitivity and calculated electrical distance derived from measurements of voltage dependence of TEA block. In the present study, we examined this relationship for the A-type K+ current (IA) of Helix aspersa in neuronal somata using the whole-cell patch-clamp technique. External TEA inhibited IA with strong voltage dependence, such that the TEA dissociation constant was increased at depolarized test potentials. The half-inhibition constant (V0.5) for TEA block was approximately 21 mM at 0 mV, and V0.5 increased to approximately 67 mM at 50 mV. The calculated electrical distance for TEA block suggested that TEA traversed 65% of the way into the membrane electrical field. TEA also caused significant shifts in the voltage-dependence of A-type K+ channel gating. For example, at TEA concentrations below that required to fully suppress delayed outward currents, TEA caused depolarizing shifts in the voltage-dependence of A-type channel activation, steady-state inactivation, time for removal of inactivation, and slowed channel activation kinetics. Taken together, these observations suggest that TEA biased the local field potential near voltage-sensing domains of A-type K+ channels, causing the transmembrane electrical field to be relatively hyperpolarized in the presence of TEA. In summary, the calculated electrical distance of TEA block of A-type K+ channels in H. aspersa neurons is unprecedented among other K+ channels. This raises concerns about the conventional interpretation of this value. Furthermore, the voltage-dependent properties of IA are modified by TEA at concentrations previously used to isolate delayed rectifier potassium channels (IKDR) selectively. This lack of specificity has important implications for recent, as well as future studies of IA in H. aspersa and possibly other snail neurons.  相似文献   

6.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

7.
Using the double sucrose gap, we have examined the role of K+ channels in the cholinergic depolarizations in response to field stimulation and acetylcholine (Ach) in canine trachealis. Acetylcholine-like depolarization per se decreased electrotonic potentials from hyperpolarizing currents. The net effect of acetylcholine (10(-6) M) depolarization on membrane conductance was a small increase after the depolarization was compensated by current clamp. Reversal potentials for acetylcholine depolarization and for the excitatory junction potential (EJP) were determined by extrapolation to be 20-30 mV positive to the resting potential, previously shown to be approximately -55 mV. They were shifted positively by tetraethylammonium ion (TEA) at 20 mM or Ba2+ at 1 mM. TEA or Ba2+ initially depolarized the membrane and increased membrane resistance. Repolarization of the membrane restored any reductions in EJP amplitudes associated with depolarization. After 15 min, the membrane potential partially repolarized, and acetylcholine-induced depolarization and contractions were then increased by TEA. 4-Aminopyridine depolarized the membrane but decreased membrane resistance. Apamin (10(-6) M), charybdotoxin (10(-7) M), and glybenclamide (10(-5) M) each failed to significantly depolarize membranes, increase membrane resistance, or reduce EJP amplitudes or depolarization to 10(-6) M Ach. Glybenclamide reduced depolarizations to added acetylcholine slightly. TEA occasionally reduced the EJP markedly, but this was shown to be most likely a prejunctional effect mediated by norepinephrine release. TEA alone among K(+)-channel blockers slowed the onset and the time courses of the EJP as well as the acetylcholine-induced depolarization. K(+)-channel closure cannot be a complete explanation of acetylcholine-induced membrane effects on this tissue. Acetylcholine must have increased the conductance of an ion with a reversal potential positive to the resting potential in addition to any effect to close K+ channels.  相似文献   

8.
The effect of Ba2+, TEA, 4-AP and CoCl2 on the EPSP and spike discharges recorded from single fibres of the posterior nerve in the isolated frog labyrinth has been investigated. In Ca-free solution Ba2+ preserved, at low concentration (0.3 mM), the resting activity and at higher levels (up to 6 mM) it resulted in a pronounced facilitation of the EPSP and spike discharges. Facilitation increased on increasing Ba2+ concentration up to 4-5 mM and it was more evident in those units exhibiting a low resting spike firing. The effect of Ba2+ (1 mM) was completely antagonized by 10 mM Ca2+ X CoCl2 (3 mM) suppressed the resting rate at the normal external Ca2+ concentration; the Co2+ block was partially relieved by 1.8 mM Ba2+ X TEA (20 mM) evoked a clear-cut increase in the EPSP and spike discharges which, however, was less consistent than that produced by Ba2+. By comparing the effect of TEA on the spike frequency with that obtained at different Ba2+ levels, the Ba2+ capacity to carry the Ca2+ current was dissected. Such an effect is dose-dependent and it is more evident in low-frequency units. Conversely, 4-AP did not affect the resting discharge frequency. These results indicate that either the Ca2+ or the Ba2+ current sustain the transmitter release at the cyto-neural junction. The effect of TEA suggests that the Ca2+-dependent K+ current may play an important role in supporting the neurosecretory process by controlling the membrane potential of the hair cells.  相似文献   

9.
The steady-state slope conductance of Limulus ventral photoreceptors increases markedly when the membrane is depolarized from rest. The ionic basis of this rectification has been examined with a voltage-clamp technique. Tail currents that occur when membrane potential is repolarized after having been depolarized have been identified. The tail currents reverse direction at a voltage that becomes more positive when Ko is increased. Rectification is reduced by extracellular 4-aminopyridine and by intracellular injection of tetra-ethyl-ammonium (TEA). These results indicate that the membrane rectification around resting potential is due primarily to voltage-sensitive K+ channels. The increase in gK caused by depolarization is not mediated by a voltage-dependent rise in in Cai++, since intracellular injection of Ca++ causes a decrease rather than an increase in slope conductance. TEA can be used to examine the functional role of the K+ channels because it blocks them without substantially affecting the light-activated Na+ conductance. The effect of TEA on response-intensity curves shows that the K+ channels serve to compress the voltage range of receptor potentials.  相似文献   

10.
The effect of extracellular K+ on membrane currents was investigated by the patch clamp and fast perfusion techniques in frog (Rana temporaria) taste receptor cells (TRCs). When added to the bath, K+ increased the TRC conductance. The integral current and current fluctuations depended on the K+ concentration (2.5-90 mM) in the manner which suggested extracellular K+ to serve as a ligand activating ionic channels (potassium-activated (PA) channels). The influence of different ions on the PA current reversal potential indicated that the responsible channels are mainly permeable to K+ and H+. Relative permeabilities were estimated as P(H):P(K) = 3600:1. With 110 mM KCl in the patch pipette and 110 mM NaCl in the bath, isolated TRCs exhibited the resting potentials from -75 to -65 mV. When raised from 2.5 to 110 mM, extracellular K+ intensively depolarized TRCs. Membrane potential vs. K+ concentration displayed a slope of about 41 mV per logarithmic unit. This indicates that the K+ permeability of the TRC membrane dominates the other in setting the potential. With 10 mM K+ in the bath, the PA channels were the major contributor to setting the TRC resting potential. External K+ markedly increased the sensitivity of isolated TRCs to bath solution pH due to the activation of the PA channels suggesting their role in sour transduction.  相似文献   

11.
Little is known about the presence and function of two-pore domain K(+) (K(2P)) channels in vascular smooth muscle cells (VSMCs). Five members of the K(2P) channel family are known to be directly activated by arachidonic acid (AA). The purpose of this study was to determine 1) whether AA-sensitive K(2P) channels are expressed in cerebral VSMCs and 2) whether AA dilates the rat middle cerebral artery (MCA) by increasing K+ currents in VSMCs via an atypical K+ channel. RT-PCR revealed message for the following AA-sensitive K(2P) channels in rat MCA: tandem of P domains in weak inward rectifier K+ (TWIK-2), TWIK-related K+ (TREK-1 and TREK-2), TWIK-related AA-stimulated K+ (TRAAK), and TWIK-related halothane-inhibited K+ (THIK-1) channels. However, in isolated VSMCs, only message for TWIK-2 was found. Western blotting showed that TWIK-2 is present in MCA, and immunohistochemistry further demonstrated its presence in VSMCs. AA (10-100 microM) dilated MCAs through an endothelium-independent mechanism. AA-induced dilation was not affected by inhibition of cyclooxygenase, epoxygenase, or lipoxygenase or inhibition of classical K+ channels with 10 mM TEA, 3 mM 4-aminopyridine, 10 microM glibenclamide, or 100 microM Ba2+. AA-induced dilations were blocked by 50 mM K+, indicating involvement of a K+ channel. AA (10 microM) increased whole cell K+ currents in dispersed cerebral VSMCs. AA-induced currents were not affected by inhibitors of the AA metabolic pathways or blockade of classical K+ channels. We conclude that AA dilates the rat MCA and increases K+ currents in VSMCs via an atypical K+ channel that is likely a member of the K(2P) channel family.  相似文献   

12.
The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.  相似文献   

13.
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated.  相似文献   

14.
Action potentials were recorded from serotonergic dorsal raphe (DR) neurons acutely isolated from the adult rat brain. Action potential waveforms were used as command potentials for whole-cell patch-clamp studies to investigate the Ca2+ and K+ currents underlying action potentials and the modulatory effects of 5-Hydroxytryptamine (5-HT) on them. These data were compared with currents elicited by using rectangular voltage steps of the type commonly used in voltage-clamp experiments. In the same cell, 5-HT simultaneously augmented K+ currents and inhibited Ca2+ currents. Experimental conditions were chosen which allowed us to examine the action of 5-HT on K+ and Ca2+ currents simultaneously or in isolation; 5-HT produced a larger inhibition of calcium current during an action potential waveform compared with that measured by using rectangular steps of voltage. A possible explanation for this finding is that the maximal inhibition is seen immediately after a voltage jump and then decreases with time. Action potentials are, in general, so brief that little time-dependent relief of block is observed. Most of the inhibition of Ca2+ current resulted from a direct effect on Ca2+ channels rather than a shortening of the action potential. The inhibition of Ca2+ current by 5-HT also decreased the Ca(2+)-activated K+ currents. These results suggest that 5-HT reduces DR neuron excitability by the simultaneous activation of K+ channel currents open at the resting potential and the suppression of Ca2+ channel currents.  相似文献   

15.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

16.
Hair cells of the inner ear are endowed with different types of ionic channels. To characterize voltage- and ion-dependent channels in vestibular hair cells, experiments were performed in enzymatically isolated hair cells of frog semicircular canals by using the whole-cell configuration of the patch-clamp technique. A large outward current, identified as a K+ current, was recorded when 132 mM KCl were present in the pipette filling solution. It could be dissected pharmacologically into three different components. The first component, which was transient and selectively blocked by 10 mM external 4AP, is most likely an IA-type current. The second one, sensitive to 20 mM external TEA, might be a delayed rectifier K+ current, while the third component insensitive to TEA and showing faster activation time course has been interpreted as a K+ current of IKCa-type. After blocking the outward current by substituting Cs+ for K+ and adding 20 mM TEA to the internal solution, a sustained inward current, identified as a Ca++ current, could be recorded. This current did not inactivate, and was blocked by Cd++ more effectively than Ni++, thus suggesting the presence of Ca++ channels similar to the neuronal "L" channels. Since both K+ and Ca++ channels were recruited at potentials near the resting level, it is suggested that they are involved in the modulation of the resting as well as the evoked transmitter release from the basal pole of the hair cells.  相似文献   

17.
Niflumic acid (NA), a putative Cl(-)-channel blocker, has provided pharmacological evidence that Cl(-)-channel closures mediate hyperpolarization caused by NO in gastrointestinal smooth muscle. However, NA caused concentration-dependent relaxation of canine lower esophageal sphincter (LES) and failed to inhibit NO-mediated relaxations. DIDS also did not inhibit NO-mediated relaxations, but did abolish them when present with 20 mM TEA (tetraethyl ammonium ion), which was also ineffective alone. TEA reversed NA-induced relaxations, but with NA it did not inhibit NO-mediated relaxations. We investigated the modes of action of these agents further. Neither nerve-function block nor block of NOS activity affected the inhibition of LES tone by NA. In patch-clamp studies, NA increased outward currents from -30 to + 90 mV when [Ca2+]pipette was 50 nM. This was prevented by 20 mM TEA, but not by prior inhibition of NOS. At 200 nM [Ca2+]pipette, TEA markedly reduced outward currents, but did not prevent the increase from subsequent NA. In contrast, under similar conditions, application of DIDS after 20 mM TEA further reduced outward currents. When the patch pipette contained CsCl and TEA to block K+ currents, NA had no significant effect on currents between -50 and +90 mV. Thus, NA acted by opening K+ channels: some TEA-sensitive and some not. It had no detectable effect on currents when K+ channels were blocked. We conclude that NA is an unreliable pharmacological tool to evaluate Cl(-)-channel contributions to smooth muscle function. DIDS did not open K+ channels. Decreases in outward currents from DIDS may result from inhibition of K+ currents or currents carried by Cl- at depolarized membrane potentials.  相似文献   

18.
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.  相似文献   

19.
The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovascular deconditioning effect due to short- and medium-term microgravity. K(+) channel function of VSMCs was studied by pharmacological methods and patch-clamp techniques. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated K(+) (K(v)) currents were determined by subtracting the current recorded after applications of 1 mM tetraethylammonium (TEA) and 1 mM TEA + 3 mM 4-aminopyridine (4-AP), respectively, from that of before. For cerebral vessels, the normalized contractility of basilar arterial rings to TEA, a BK(Ca) blocker, and 4-AP, a K(v) blocker, was significantly decreased after 1- and 4-wk simulated microgravity, respectively. VSMCs isolated from the middle cerebral artery branches of suspended rats had a more depolarized membrane potential (E(m)) and a smaller K(+) current density compared with those of control rats. Furthermore, the reduced total current density was due to smaller BK(Ca) and smaller K(v) current density in cerebral VSMCs after 1- and 4-wk tail suspension, respectively. For hindquarter vessels, VSMCs isolated from second- to sixth-order small mesenteric arteries of both 1- and 4-wk suspended rats had a more negative E(m) and larger K(+) current densities for total, BK(Ca), and K(v) currents. These results indicate that differential activation of K(+) channels occur in cerebral and hindquarter VSMCs during short- and medium-term simulated microgravity. It is further suggested that different profiles of channel remodeling might occur in VSMCs as one of the important underlying cellular mechanisms to mediate and modulate differential vascular adaptation during microgravity.  相似文献   

20.
On the resting potential of isolated frog sympathetic neurons   总被引:4,自引:0,他引:4  
S W Jones 《Neuron》1989,3(2):153-161
One of the oldest questions of electrophysiology, the origin of the resting potential, has yet to be answered satisfactorily for most cells. Isolated frog sympathetic neurons, studied with whole-cell recording, generally have resting potentials of approximately -75 mV with an input resistance of approximately 300 M omega. These properties are not expected from the M-type K+ current (IM) or from other ionic currents previously described in these cells. In the -60 to -110 M mV voltage region, at least three currents are present: an inwardly rectifying current (IQ), a resting current with little voltage sensitivity carried at least in part by K+, and a (Na+,K+)ATPase pump current. The resting K+ current, not IM or IQ is the primary ionic current near the resting potential under these conditions. The electrogenic pump contributes an additional approximately 10 mV of hyperpolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号