首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ovariectomy on serum 6-keto-PGFI, and TXB2 concentrations and platelet fatty acids were investigated. One month after ovariectomy the levels of 6-keto-PGFI, were unaltered, whereas those of TXB2 were significantly increased. Ovariectomy had no effect on the fatty acid composition of platelets. Thus, the present study suggests that the hormonal changes at the time of menopause may modify the formation of metabolites of arachidonic acid.  相似文献   

2.
Aspirin inhibits cyclo-oxygenase, thus preventing prostanoids formation. After oral administration aspirin is hydrolysed to inactive salicylate partly within the gastrointestinal tract, partly during first pass in the liver, partly in the circulation by plasma esterases. Intravenous aspirin, in contrast, mainly undergoes plasma esterase-catalysed deacetylation. Six healthy male subjects were given 1 g aspirin orally and intravenously two weeks apart according to a cross-over randomized design. Whereas serum T×B2 generation reflecting platelet cyclo-oxygenase activity was suppressed by aspirin by both routes, urinary excretion of T×B2 and 6-keto-PGF1α was not affected by oral aspirin, but was partially though significantly reduced by the i.v. drug. Drug disposition seems therefore to be essential in determining the “biochemical selectivity” of aspirin as related to platelet and renal prostanoids generation.  相似文献   

3.
Levels of PGE2, PGF, PGI2 (measured as 6-keto-PGF), and thromboxane B2 were determined in rat inflammatory exudates induced 1, 3, and 7 days after carrageenin injection into air-pouch granuloma. The PGE2 and 6-keto-PGF levels found in the exudate could not account for the differences in PGE2-like activity as measured by biologic and serologic methods.  相似文献   

4.
The metabolism of PGF2α in cattle results initially in the formation of 15-keto-13,14-dihydro-PGF2α (15-ketodihydro-PGF2α) and later the 11-ketotetranor PGF metabolites. Both types of metabolites appear in the peripheral circulation and finally the 11-ketotetranor PGF metabolites are found in large quantities in the urine in a species-related pattern. Several approaches can be made to the quantitative analysis of PGF2α release during reproductive studies. First, assay of the 15-ketodihydro-PGF2α metabolite in the peripheral circulation; second, analysis of the longer-lived 11-ketotetranor PGF metabolites in the peripheral circulation; and finally analysis of the latter metabolites in the urine. The antibodies used in radioimmunoassays of both types of metabolites of PGF2α were found to be specific and the results agree well with those obtained earlier by mass spectrometric analysis. The assay of 11-ketotetranor PGF metabolites was used to study the excretion of urinary metabolites in the cow after i.v. infusion of PGF2α and also during the normal estrous cycle and early pregnancy. These studies suggest that 11-ketotetranor PGF metabolites in cow urine serve as a good parameter of PGF2α release, especially for long–term studies, but when a precise pattern of PGF2α release is required, measurement of 15-ketodihydro-PGF2α levels in frequently collected plasma samples is preferable.  相似文献   

5.
The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations.  相似文献   

6.
The body's ability to produce prostacyclin and thromboxane by blood vessels and platelets may be important in hemostatic and thrombotic disorders and in blood pressure regulation. There are limitations to the information that can be derived from measurement of the active substances or metabolites in plasma and urine. Assays for thromboxane and prostacyclin in bleeding time blood reflect production in response to a single standardized vascular injury, and show considerable promise in furthering our understanding of the production of these chemicals in vivo. These assays may improve the assessment of risk of developing thrombotic disorders and improve the ability to monitor treatment. Studies to date have focused largely on the influences of various doses of aspirin on the production of prostacyclin and thromboxane in bleeding time blood, but also suggest that smokers are high thromboxane producers. In addition, individuals who exhibit type A behavior, a behavior pattern characterized by a relatively high level of ambitiousness, hostility, and competitive drive and a chronic sense of urgency appear to be low prostacyclin producers. Diets enriched in sunflower oil were found to diminish thromboxane production, while diets high in canola oil enhanced prostacyclin formation.  相似文献   

7.
8.
Zhu X  Liu Q  Wang M  Liang M  Yang X  Xu X  Zou H  Qiu J 《PloS one》2011,6(11):e27081
Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases.  相似文献   

9.
We determined in cultured kidney epithelial cells (LLC-PK(1)) the effects of high glucose, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) on mRNA and protein expression of the renal glucose transporters SGLT1 and SGLT2. Cultured monolayers were incubated with similar concentrations of IL-6 and TNF-α to those produced by LLC-PK(1) in the presence of 20 mM glucose. Confluent monolayers with either 5 (controls, C) or 20 mM glucose (high glucose, HG) were incubated in the presence of 5 mM glucose, 20 mM glucose, 10 pg/ml IL-6, or TNF-α alone or in combination. Separate groups with IL-6 and TNF-α were incubated with antibodies to their respective receptors. HG induced an increased SGLT1 mRNA at 48 h (p<0.05 vs. C) and protein expression in 120 h (p<0.05 vs. C). HG also induced an increased SGLT2 mRNA at 72 and 96 h (P<0.05 vs. C) and SGLT2 protein expression at 120 h (p<0.05 vs. C). In C, 10 pg/ml IL-6 or TNF-α did not modify SGLT1 mRNA (n.s vs. in the absence of cytokines). In contrast, cytokines induced an increased expression of SGLT1 protein at 120 h (p<0.05 vs. in the absence of cytokines), and SGLT2 mRNA and protein were increased at 96 and 120 h, respectively (p<0.05 vs. in absence of cytokines). No changes were observed when cells were incubated with cytokines and HG (n.s vs. C). In conclusion, this study showed that SGLT2 increased in the presence of IL-6 and TNF-α, indicating an autocrine modulation of the expression of this transporter by cytokines.  相似文献   

10.
11.
Intrauterine insertion of a Silastic-PVP tube containing 400 μg PGF terminated midterm pregnancy in 100 percent of the animals. Progesterone (2 mg/day) or prolactin (PRL) reversed the abortifacient effect of PGF. A dose- and duration-related effect of the PRL on PGFinduced termination of pregnancy was evident. The results suggest that PP 2 and PRL are antagonistic to each other and multiple doses of PRL are needed to neutralize the luteolytic action of PGF.  相似文献   

12.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

13.
Clinical features of certain immuno-inflammatory disorders exhibit time-dependent fluctuations, which could be related to circadian rhythmicity of proinflammatory mediator production. Many biologically active substances including nitric oxide (NO) and eicosanoids are released into the circulation in sepsis. Increased NO and eicosanoid levels have been reported to be responsible from death in septic shock. The aim of this study was to investigate the variations in the NO and eicosanoid production and mortality induced by bacterial endotoxin, lipopolysaccharide (LPS) injected either in the morning or in the evening. Experiments were performed on mice synchronised to 12 h light and 12 h dark (lights on at 09:00 h). Animals were injected intraperitoneally with LPS (10 mg/kg) at 09:00 (morning) and 21:00 h (evening) alone or in combination with aminoguanidine (NO synthase (NOS) inhibitor) (100 mg/kg) or indomethacin (cyclooxygenase (COX) inhibitor) (100 mg/kg). The serum was separated from blood samples obtained at nine different time points. Nitrite (stable product of NO), 6-keto-prostaglandin F (6-keto-PGF, stable product of prostacyclin) and thromboxane B2 (TxB2, stable product of thromboxane) concentrations in serum samples were measured. Serum nitrite levels showed a 24 h circadian rhythmicity depending on LPS injection time. Morning injection caused a peak after 15 h, while evening injection had two peaks after 9 and 18 h. The peak values obtained from morning and evening injections were significantly decreased by aminoguanidine and indomethacin. When LPS injected to mice in the morning and in the evening, it gradually increased the mortality rate within 24 h which could be abolished by aminoguanidine, but not indomethacin. Indomethacin-induced inhibition on LPS-induced nitrite levels was higher in the morning than in the evening. 6-keto-PGF and TxB2 levels were decreased by indomethacin when injected with LPS at both injection times, but not aminoguanidine. These results showed that there is an interaction between NO and eicosanoids, and LPS may produce different effects on NOS activity, but not eicosanoid production and mortality, depending on injection time in the experimental septic shock model in mice. Chronopharmacological manipulations of NOS and COX pathways and interactions between them could lead to novel therapeutic approaches for the treatment of septic shock.  相似文献   

14.
15.
The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.  相似文献   

16.
17.
Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.  相似文献   

18.
In this experiment, the cross-talk betweenNotch and the NF-κB signaling pathway was examined to reveal the mechanism of slowing down the type II collagen (ColII) and aggrecan degeneration affected by inflammatory cytokines. The expression levels of ColII and aggrecan in the intervertebral disc were observed through immunohistochemistry and hematoxylin-eosin staining+alcian blue staining, respectively. The expression levels of ColII, aggrecan, Runx2, and NF-κB in the nuclei of human nucleus pulposus cells (hNPCs) in each group, as well as the phosphorylation and acetylation levels of p65, were examined through Western blot analysis. The 293T cells were transfected with a plasmid containing the overexpressed relative domain of Notch1 intracellular domain (NICD1), and immunoprecipitation (IP) was performed to observe the combination of NICD1 and p65. HNPCs were transfected with a lentiviral-contained overexpression lacking the ANK region of NICD1, and IP was performed to observe the combination of NICD1 and p65. The expression of ColII and aggrecan in the intervertebral disc culture increased when γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-Sphenylglycine t-butyl ester (DAPT) was added to the disc culture medium. Western blot revealed that DAPT inhibited p65 phosphorylation and acetylation, and the p65 and p50 levels in the nucleus decreased. NICD1 was found to be combined with p65 in contrast to the reverse consequences after ANK domain deletion in hNPCs. In nucleus pulposus cells, the combination of p65 and the ANK domain of NICD1 is a critical procedure for the degeneration related to the NF-κB signaling pathway activation induced by IL-1β and TNF-α.  相似文献   

19.
TNF and IL-1 each can activate NF-B and induce gene expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix enzyme which can provide critical protection against hyperoxic lung injury. The regulation of MnSOD gene expression is not well understood. Since redox status can modulate NF-B and potential B site(s) exist in the MnSOD promoter, the effect of thiols (including NAC, DTT and 2-ME) on TNF and IL-1 induced activation of NF-B and MnSOD gene expression was investigated. Activation of NF-kB and increased MnSOD expression were potentiated by thiol reducing agents. In contrast, thiol oxidizing or alkylating agents inhibited both NF-B activation and elevated MnSOD expression in response to TNF or IL-1. Since protease inhibitors TPCK and TLCK can inhibit NF-B activation, we also investigated the effect of these compounds on MnSOD expression and NF-B activation. TPCK and TLCK each inhibited MnSOD gene expression and NF-B activation. Since the MnSOD promoter also contains anAP-1 binding site, the effect of thiols and thiol modifying agents on AP-1 activation was investigated. Thiols had no consistent effect onAP-1 activation. Likewise, some of the thiol modifying compounds inhibited AP-1 activation by TNF or IL-1, whereas others did not. Since diverse agents had similar effects on activation of NF-B and MnSOD gene expression, we have demonstrated that activation of NF-B and MnSOD gene expression are closely associated and that reduced sulfhydryl groups are required for cytokine mediation of both processes.Abbreviations O2 Superoxide radical - H2O2 Hydrogen peroxide - NAC N-acetyl L-cysteine - DTT Dithiothreitol - 2-ME 2-Mercaptoethanol - MnSOD Manganese superoxide dismutase - NF-B Nuclear factor kappa B - AP-1 Activator protein-1 - NBT Nitroblue tetrazolium - CAT Chloramphenicol acetyltransferase - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - TLCK Na-p-tosyl-L-lysine chloromethyl ketone - TAME N--p-tosyl-L-arginine methyl ester - NEM N-ethyl maleimide - DEM Diethyl maleate - CDNB 1-chloro-2,4-dinitrobenzene - DTTOX Oxidized dithiothreitol  相似文献   

20.
LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号