共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Whitaker M Smith J 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1495):1307-1310
Calcium ions generate ubiquitous cellular signals. Calcium signals play an important role in development. The most obvious example is fertilization, where calcium signals and calcium waves are triggered by the sperm and are responsible for activating the egg from dormancy and cell cycle arrest. Calcium signals also appear to contribute to cell cycle progression during the rapid cell cycles of early embryos. There is increasing evidence that calcium signals are an essential component of the signalling systems that specify developmental patterning and cell fate. This issue arises from a Discussion Meeting that brought together developmental biologists studying calcium signals with those looking at other patterning signals and events. This short introduction provides some background to the papers in this issue, setting out the emerging view that calcium signals are central to dorsoventral axis formation, gastrulation movements, neural specification and neuronal cell fate. 相似文献
5.
6.
Plants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response. 相似文献
7.
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis. 相似文献
8.
L T Ramseyer J Barker-Harrel D J Smith K A McBride R N Jarman R H Broyles 《Developmental biology》1989,133(1):262-271
We have detected trans-acting factors that regulate developmental hemoglobin switching by fusing erythroid cells of different developmental programs. Adult erythroid cells of one anuran species, Xenopus laevis, were fused with tadpole erythroid cells of another frog, Rana catesbeiana. In a second set of experiments, dimethyl sulfoxide-induced murine erythroleukemia cells, which express only adult mouse globins, were fused with Rana tadpole erythroid cells, which express only embryonic and fetal-like globins. Adult Rana globin gene expression was detected in both sets of transient heterokaryons at 6 hr after fusion. Dot blots and Northern blots of total RNA from the heterokaryons contained material that reacted with an adult Rana alpha-globin probe; newly synthesized adult Rana hemoglobin tetramers were detected with native polyacrylamide gel electrophoresis. These results show that developmental stage-specific transacting factors for globin genes can function across vertebrate classes (mammalia to amphibia) and suggest that the mechanisms that regulate developmental hemoglobin switching are highly conserved. 相似文献
9.
10.
11.
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed. 相似文献
12.
In the healthy individual, Candida albicans is frequently found as a harmless commensal residing in the gastrointestinal tract. However, in the compromised patient, C. albicans may invade the body and cause disease that is associated with poor prognosis and high mortality. The C. albicans adenylyl cyclase, Cyr1, which is required for virulence in animal models, regulates three developmental programs, including invasive filamentous growth, phenotypic switching to a mating-competent cell type, and biofilm formation. Evidence suggests that Cyr1 controls these phenotypes in response to various environmental cues that are present within microbial populations. Additionally, C. albicans secretes an autoregulatory molecule, farnesol, which was recently shown to directly inhibit Cyr1 activity. Below, we summarize recent advances in our understanding of Cyr1-regulated development and discuss the multiple inputs known to positively and negatively regulate cAMP synthesis. We discuss the possibility that Cyr1 acts as a coincidence detector that tightly regulates fungal development in response to parallel environmental stimuli, and highlight ways in which this might occur. 相似文献
13.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here. 相似文献
14.
Hasson O 《Trends in ecology & evolution》1991,6(10):325-329
When encountering predators, prey animals often expose themselves by loud vocalization, by repeated movements or by revealing conspicuous colors. The more elaborate displays were often considered to be warning signals directed to other prey, and the less obvious displays to be intention movements. During the last decade, there has been increasing evidence that, in fact, prey display is aimed at the predator, apparently to deter further pursuit. This communication between two seemingly unlikely partners, prey and predator, appears to be based upon a common interest - satisfying the predator's need for further information. 相似文献
15.
16.
Synchronous spiking of neural populations is hypothesized to play important computational roles in forming neural assemblies and solving the binding problem. Although the opposite phenomenon of desynchronization is well known from EEG studies, it is largely neglected on the neuronal level. We here provide an example of in vivo recordings from weakly electric fish demonstrating that, depending on the social context, different types of natural communication signals elicit transient desynchronization as well as synchronization of the electroreceptor population without changing the mean firing rate. We conclude that, in general, both positive and negative changes in the degree of synchrony can be the relevant signals for neural information processing. 相似文献
17.
Oxylipins are a family of oxygenated fatty acids that are very diverse with regard to origin, structure, and functions. These compounds are found in almost all living beings and serve both as autoregulators of the development of organisms and as communication molecules. The autoregulatory role of oxylipins in fungi is to control the development, reproduction, synthesis of secondary metabolites (including mycotoxins), and adaptive responses. The role of oxylipins in the regulation of pathogenesis accounts for an important aspect of research on the biological activity of these compounds. The synthetic pathways and functions of oxylipins of fungi, the differences between fungal oxylipins and oxylipins from bacteria, higher plants, and mammals, and the role of oxylipins in the interaction of fungi with other organisms are considered in the present review. 相似文献
18.
Gerald S. Pollack 《Current opinion in neurobiology》2001,11(6):734-738
Temporal pattern is a crucial feature of communication signals, and neurons in the brains of many animals respond selectively to behaviorally relevant temporal features of sensory stimuli. Many aspects of neural function contribute to this selectivity, including membrane biophysics, channel properties, synaptic physiology and network structure. 相似文献
19.
From the 1980s movie Firefox to the more recent Avatar, popular science fiction has speculated about the possibility of a persons thoughts being read directly from his or her brain. Such braincomputer interfaces (BCIs) might allow people who are paralyzed to communicate with and control their environment, and there might also be applications in military situations wherever silent user-to-user communication is desirable. Previous studies have shown that BCI systems can use brain signals related to movements and movement imagery or attention-based character selection. Although these systems have successfully demonstrated the possibility to control devices using brain function, directly inferring which word a person intends to communicate has been elusive. A BCI using imagined speech might provide such a practical, intuitive device. Toward this goal, our studies to date addressed two scientific questions: (1) Can brain signals accurately characterize different aspects of speech? (2) Is it possible to predict spoken or imagined words or their components using brain signals? 相似文献