首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

2.
The kinetics of reduction of Chromatium vinosum flavocytochrome c heme subunit by exogenous flavin neutral semiquinones generated by laser flash photolysis have been investigated. Unlike the holoprotein, the isolated heme subunit was appreciably reactive with lumiflavin neutral semiquinone. The measured rate constant for the reaction (2.7 X 10(7) M-1 S-1) was comparable to those of c-type cytochromes having similar redox potentials. The ionic strength dependence of the reaction with FMN neutral radical indicated that the heme subunit had a small negative charge at the site of reduction. Taken together, these results suggest that the active site of the heme subunit is buried on complexation with the flavin subunit in the holoprotein. Horse cytochrome c formed a strong complex with Chromatium, but not Chlorobium, flavocytochrome c. Possible physiological electron acceptors such as HiPIP, cytochrome c', and cytochrome c-555 apparently did not bind to the flavocytochromes c. The rate constant for reduction by lumiflavin radical of horse cytochrome c complexed to flavocytochrome c was about twofold smaller than for reduction of horse cytochrome c alone. Flavocytochrome c was itself unreactive with exogenous flavin semiquinones. The ionic strength dependence of the reduction of the complex by FMN radical was also smaller than for horse cytochrome c in the absence of flavocytochrome c. Sulfite, which forms an adduct with the protein-bound FAD (FAD is bound in an 8-alpha-S-cysteinyl linkage), did not affect the reduction of horse cytochrome c in its complex with flavocytochrome c. We conclude that horse cytochrome c is reduced directly by exogenous flavins in its complex with flavocytochrome c, although the kinetics are slightly modified. These results are not unlike observations made with complexes of mitochondrial cytochrome c with cytochrome oxidase or cytochrome b5.  相似文献   

3.
Photosynthetic reaction centers (RCs) and their core light-harvesting complexes (LH1-RCs), purified from a thermophile, Thermochromatium (T.) tepidum, and a mesophile, Allochromatium (A.) vinosum, were reconstituted into liposomes. The RC and the LH1-RC in the reconstituted liposomes were found intact from the absorption spectra at about 4 and 40 degrees C respectively. The thermal stability of the RCs of T. tepidum in the liposome was dependent on whether they were surrounded directly by lipids or by the core light-harvesting complexes. The results show that the RC of T. tepidum gains its thermostability through interactions with the LH1. These results are consistent with the result that the thermal stability of the LH1 in T. tepidum is similar in both the reconstituted LH1-RC liposome and ICM. This is clearly different from the mesophilic bacterium, A. vinosum. The thermal stability of RC was also affected by its subunit constitution: the RC containing a cytochrome subunit was more thermostable than the cytochrome-detached RC. This suggests that the cytochrome subunit might play a role in protecting the special pair pigments from denaturation. The thermal denaturation showed a second-order reaction dependence on time. The interaction of the pigments with proteins and/or lipids might be the cause of the second-order reaction profile.  相似文献   

4.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

5.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

6.
The amino acid sequence of cytochrome c' from the purple photosynthetic bacterium Rhodospirillum rubrum S1 has been determined and is consistent with homology to cytochrome c' from the nonphotosynthetic bacterium Alcaligenes sp. NCIB 11015. There is 29% identity in the chosen alignment of these two proteins. R. rubrum cytochrome c' is composed of a single peptide chain of 126 amino acid residues with a single heme covalently bound near the COOH terminus. There is no sequence similarity to mitochondrial cytochrome c, except at the heme binding site.  相似文献   

7.
Thermochromatium tepidum is a thermophilic purple sulfur photosynthetic bacterium collected from the Mammoth Hot Springs, Yellowstone National Park. A previous study showed that the light-harvesting-reaction center core complex (LH1-RC) purified from this bacterium is highly stable at room temperature (Suzuki, H., Hirano, Y., Kimura, Y., Takaichi, S., Kobayashi, M., Miki, K., and Wang, Z.-Y. (2007) Biochim. Biophys. Acta 1767, 1057-1063). In this work, we demonstrate that thermal stability of the Tch. tepidum LH1-RC is much higher than that of its mesophilic counterparts, and the enhanced thermal stability requires Ca2+ as a cofactor. Removal of the Ca2+ from Tch. tepidum LH1-RC resulted in a complex with the same degree of thermal stability as that of the LH1-RCs purified from mesophilic bacteria. The enhanced thermal stability can be restored by addition of Ca2+ to the Ca2+-depleted LH1-RC, and this process is fully reversible. Interchange of the thermal stability between the two forms is accompanied by a shift of the LH1 Qy transition between 915 nm for the native and 880 nm for the Ca2+-depleted LH1-RC. Differential scanning calorimetry measurements reveal that degradation temperature of the native LH1-RC is 15 degrees C higher and the enthalpy change is about 28% larger than the Ca2+-depleted LH1-RC. Substitution of the Ca2+ with other metal cations caused a decrease in thermal stability of an extent depending on the properties of the cations. These results indicate that Ca2+ ions play a dual role in stabilizing the structure of the pigment-membrane protein complex and in altering its spectroscopic properties, and hence provide insight into the adaptive strategy of this photosynthetic organism to survive in extreme environments using natural resources.  相似文献   

8.
The dimeric high spin c-type cytochrome c' from Chromatium vinosum has been crystallized and the crystals characterized by x-ray diffraction. This cytochrome c' exhibits ligand-controlled dissociation from a dimer to a monomer upon binding carbon monoxide and represents an opportunity to obtain unique information concerning cooperativity in heme proteins. The C. vinosum cytochrome c' protein crystals are grown from polyethylene glycol 4000 and grow in both space group P2(1)2(1)2(1) (a = 49.2, b = 56.7, c = 98.8 A) and space group P2(1) (a = 55, b = 94, c = 50, beta = 106.1 A) depending upon the growth rate, with the P2(1)2(1)2(1) form favored at slower growth rates. The high resolution (2.0 A) atomic structure of the P2(1)2(1)2(1) form is being determined.  相似文献   

9.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the "front face" of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.  相似文献   

10.
The electrochemistry of the enzyme, sulfide:cytochrome c oxidoreductase, also known as flavocytochrome c552 from the purple sulfur bacterium, Chromatium vinosum, has been studied using several modified electrodes. Direct electron transfer between the heme of the flavocytochrome and an electrode is observed in the presence of a redox-inactive cationic species which promotes the voltammetry of the enzyme. Quasi-reversible electron transfer was achieved using the aminoglycoside, neomycin, as a promoter at either a modified gold or polished edge-plane graphite electrode. Further evidence for direct electron transfer is provided by the catalytic response of the enzyme at the electrode in the presence of substrate. Also reported is the direct spectroelectrochemistry of flavocytochrome c552 at an optically transparent thin layer gold electrode modified with Cys-Glu-Cys in the presence of neomycin.  相似文献   

11.
Abstract Ribulose-1,5-biphosphate carboxylase (RuBPCase) partially purified from the thermophilic purple bacterium Chromatium tepidum displayed maximum carboxylase activity at 50°C, while enzyme from a related mesophilic species, Chromatium vinosum , was completely inactive at 50°C. RuBPCase from C. tepidum showed ribulose-1,5- bisphosphate-dependent oxygenase activity, and, in addition, O2 was found to partially destroy carboxylase activity. It is concluded that thermophilic purple bacteria produce heat-stable RuBPCase and that all RuBPCases, even those from an obligate anaerobe such as C. tepidum , have associated oxygenase activity.  相似文献   

12.
The cytochromes c' bind CO, alkylisocyanides and CN- with rate and equilibrium constants which are 10(2)- to 10(6)-fold smaller than other high-spin hemoproteins. The decreased affinity for exogenous ligands is largely associated with steric interactions at the heme coordination site. While CO and alkylisocyanides bind noncooperatively to the dimeric Rhodospirillum molischianum cytochrome c', CO, alkylisocyanides and CN- appear to bind cooperatively to the dimeric Chromatium vinosum cytochrome c' due to a ligand-linked dimer-monomer dissociation equilibrium. The differences between the cytochromes c' are thought to be due to differences in amino acid residues near the heme coordination site and subunit interface.  相似文献   

13.
The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.  相似文献   

14.
Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN(-). This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization.  相似文献   

15.
Hydrogenophilus thermoluteolus cytochrome c' (PHCP) has typical spectral properties previously observed for other cytochromes c', which comprise Ambler's class II cytochromes c. The PHCP protein sequence (135 amino acids) deduced from the cloned gene is the most homologous (55% identity) to that of cytochrome c' from Allochromatium vinosum (AVCP). These findings indicate that PHCP forms a four-helix bundle structure, similar to AVCP. Strikingly, PHCP with a covalently bound heme was heterologously synthesized in the periplasm of Escherichia coli strains deficient in the DsbD protein, a component of the System I cytochrome c biogenesis machinery. The heterologous synthesis of PHCP by aerobically growing E. coli also occurred without a plasmid carrying the genes for Ccm proteins, other components of the System I machinery. Unlike Ambler's class I general cytochromes c, the synthesis of PHCP is not dependent on the System I machinery and exhibits similarity to that of E. coli periplasmic cytochrome b(562), a 106-residue four-helix bundle.  相似文献   

16.
The kinetics of sulfite adduct formation with the bound flavin in flavocytochromes c from the purple phototrophic bacterium Chromatium vinosum and the green phototrophic bacterium Chlorobium thiosulfatophilum have been investigated as a function of pH. Both species of flavocytochrome c rapidly react with sulfite to form a flavin sulfite adduct (k = 10(3)-10(5) M-1 s-1) which is bleached at 450-475 nm and has associated charge-transfer absorbance at 660 nm. The rate constant for adduct formation in flavocytochrome c is 2-4 orders of magnitude faster than for model flavins of comparable redox potential and is likely to be due to a basic residue near the N-1 position of the flavin, which not only raises the redox potential but also stabilizes the negatively charged adduct. There is a pK for adduct formation at 6.5, which suggests that the order of magnitude larger rate constant at pH 5 as compared to pH 10 in flavocytochrome c is due the influence of another positive charge, possibly a protonated histidine residue. The adduct is indefinitely stable at pH 5 but decomposes (the flavin recolors) in a first-order process accelerating above pH 6 (at pH 10, k = 0.1 s-1). The pK for recoloring is 8.5, which is suggestive of a cysteine sulfhydryl. On the basis of the observed pK and available chemical information, we believe that recoloring is due to a secondary effect of the reaction of sulfite with a protein cystine disulfide, which is adjacent to the flavin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
P C Weber 《Biochemistry》1982,21(21):5116-5119
The cytochromes c' are a class of heme proteins whose native spectroscopic properties have been suggested to represent a quantum mechanical admixture of intermediate-(S = 3/2) and high-(S = 5/2) spin states. Here features of the cytochrome c' heme environment, as revealed by X-ray crystallographic studies of the dimeric cytochrome c' from Rhodospirillum molischianum, are related to the observed spectroscopic properties. The environment of the heme group in cytochrome c' supports the existence of the admixed spin state at neutral pH and suggests that pH-dependent transition to a pure high-spin state at alkaline pH involves deprotonation of the histidine axial ligand to the heme iron.  相似文献   

19.
Flavocytochrome c from the Gram-negative, food-spoiling bacterium Shewanella putrefaciens is a soluble, periplasmic fumarate reductase. We have isolated the gene encoding flavocytochrome c and determined the complete DNA sequence. The predicted amino acid sequence indicates that flavocytochrome c is synthesized with an N-terminal secretory signal sequence of 25 amino acid residues. The mature protein contains 571 amino acid residues and consists of an N-terminal cytochrome domain, of about 117 residues, with four heme attachment sites typical of c-type cytochromes and a C-terminal flavoprotein domain of about 454 residues that is clearly related to the flavoprotein subunits of fumarate reductases and succinate dehydrogenases from bacterial and other sources. A second reading frame that may be cotranscribed with the flavocytochrome c gene exhibits some similarity with the 13-kDa membrane anchor subunit of Escherichia coli fumarate reductase. The sequence of the flavoprotein domain demonstrates an even closer relationship with the product of the yeast OSM1 gene, mutations in which result in sensitivity to high osmolarity. These findings are discussed in relation to the function of flavocytochrome c.  相似文献   

20.
The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium (Tch.) tepidum exhibits unusual Q(y) absorption by LH1 bacteriochlorophyll-a (BChl-a) molecules at 915nm, and the transition energy is finely modulated by the binding of metal cations to the LH1 polypeptides. Here, we demonstrate the metal-dependent interactions between BChl-a and the polypeptides within the intact LH1-RC complexes by near-infrared Raman spectroscopy. The wild-type LH1-RC (B915) exhibited Raman bands for the C3-acetyl and C13-keto CO stretching modes at 1637 and 1675cm(-1), respectively. The corresponding bands appeared at 1643 and 1673cm(-1) when Ca(2+) was biosynthetically replaced with Sr(2+) (B888) or at 1647 and 1669cm(-1) in the mesophilic counterpart, Allochromatium vinosum. These results indicate the significant difference in the BChl-polypeptide interactions between B915 and B888 and between B915 and the mesophilic counterpart. The removal of the original metal cations from B915 and B888 resulted in marked band shifts of the C3-acetyl/C13-carbonyl νCO modes to ~1645/~1670cm(-1), supporting a model in which the metal cations are involved in the fine-tuning of the hydrogen bonding between the BChl-a and LH1-polypeptides. Interestingly, the interaction modes were almost identical between the Ca(2+)-depleted B915 and Sr(2+)-depleted B888 and between B915 and Ca(2+)-substituted B888, despite the significant differences in their LH1 Q(y) peak positions and the denaturing temperatures, as revealed by differential scanning calorimetry. These results suggest that not only the BChl-polypeptide interactions but some structural origin may be involved in the unusual Q(y) red-shift and the enhanced thermal stability of the LH1-RC complexes from Tch. tepidum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号