首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Importance of study of astrocytes for fundamental biology and medicine is due to their key role in formation of the brain barrier system. On taking into consideration the controversial data on structure of the mammalian neocortex superficial layers, of great actuality are the comparative studies of the structural and cytochemical organization of astrocytes in human and in the laboratory animals used in the experimental studies connected with modeling of brain diseases and traumas. The goal of the present work was to study structural organization of astrocytes in the human and rat neocortical layer I. The work was carried out on the autopsy and experimental material from Wistar rats. Astrocytes were revealed immunocytochemically by using antibodies to GFAP, vimentin and nestin. The preparations were examined with aid of light and confocal laser microscopy. No significant difference in the sizes of perinuclear areas were established between the rat and human astrocytes. In the majority of cortex regions, the spectrum of intermediate filaments-forming proteins in these cells was identical. However, there were essential differences revealed in organization of the superficial glial limiting membrane (SGLM). The human SGLM is formed by interlacing of thin processes in the layer I processes, whereas the rat SGLM is represented by specialized astrocytes spread along the cortical surface and connected with the wide-blade processes. The human layer I astrocytes have translaminar processes passing via several cortical layers, whereas in rats such processes are located within the limits of one layer. The revealed differences in the astrocyte structural organization should be taken into account when interpreting results of experimental studies carried out on rats and extrapolating these results to human.  相似文献   

2.
FINE STRUCTURE OF THE SURFACE OF THE CEREBRAL CORTEX OF HUMAN BRAIN   总被引:1,自引:0,他引:1       下载免费PDF全文
Evidence is presented for the existence of arborizing cytoplasmic processes extending from the surface of the cerebral cortex of human brain into the surrounding fluid medium. These originate from subpial fibrous astrocytes and contain the usual cytoplasmic organelles of those cells. They are bordered by basement membrane. Their occurrence is localized and variable over the cortical surface. They are more prevalent in pathological human material than in "normal" human brain and somewhat more prevalent in the latter than in normal rat cortex. Some additional information is presented regarding the relationship of leptomeninges to the cortical surface. The pia mater does not invariably adhere inseparably to the subjacent layer of fibrous astrocytes as generally assumed at present, nor does it always form a continuous layer over the surface of the brain in the material under study. Both collagen and cytoplasmic extensions of astrocytes intervene between these layers. These findings imply that glial elements of the cortex have direct access to the cerebrospinal fluid.  相似文献   

3.
4.
Recording the evoked potentials and neuronal activity, electrophysiological studies have been made on tecto-thalamo-cortical tract in rats. The existence of a system of efferent projections in the superficial, visual layers of the superior colliculi was shown which are diffusely present in the nucleus lateralis posterior (n. LP), indicating low level of morpho-functional organization of this region of the dorsal thalamus in rats. In response to electrical stimulation of the n. LP, in laterocaudal parts of the visual system (fields 17 and 18a of the cortex) the evoked potentials of primary-negative polarity were observed which are associated mainly with the superficial (I--IV) cortical layers. Predominant representation of tecto-thalamo-cortical system in the laterocaudal visual area of the cortex indicates the tendency to separate representation (with respect to cortical areas and cortical layers) of retino-geniculate and retino-tecal visual systems in rats.  相似文献   

5.
The types of dendro-dendritic synapses and their participation in the synaptic, organization of superficial layers of the quadrigeminum superior tubercles were studied electron microscopically. In addition to simple forms of dendro-dentritic synapses the reciprocal dendro-dendritic synapses were revealed. Presynaptic dendrites formed the synaptic fields and glomerules of the superficial grey layer. The terminals of optical, cortical fibres from the visual cortex and other types of terminals terminated on presynaptic dendrites.  相似文献   

6.
Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.

SummaryGyrification is the neurodevelopmental process in certain mammalian species during which the cerebral cortex expands and folds resulting in the classic wrinkled appearance of the brain. Abnormalities in this process underlie many congenital malformations of the brain. However, unlike many other human malformations, genetic insight into gyrification is not possible in laboratory mice because rodents have a lissencephalic or smooth cerebral cortex. We identified a pathogenic variant in domestic cats that likely causes failure of the cerebral cortex to expand and fold properly, and discovered that the pathogenic variant impairs production of a protein, PEA15 (phosphoprotein expressed in astrocytes-15), involved in intracellular signaling. Affected cats have profound abnormalities in brain development, with minimal changes in their superficial behavior and neurologic function. Additional studies of tissue and cultured cells from affected animals suggest a pathophysiologic mechanism in which increased death of neurons accompanied by increased cell division of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. These results provide new insight into a developmental process that is unique to animals with gyrencephalic brains.  相似文献   

7.
Prenatal ontogeny of the human neocortex exhibits specific characteristics that make its organization unique. Therefore, experimental data obtained on animal models cannot be extrapolated to human cortex morphogenesis during the middle and late gestational periods. Characteristics of the development of cortical pyramidal neurons of the human brain were studied in the brains of eight fetuses at gestational ages between 16 and 26 weeks. Immunohistochemical labeling of neurons was performed using antibodies against microtubule associated protein 2 (MAP2), a structural protein of microtubules. Expression of this protein marks the beginning of dendrogenesis. MAP2 is mainly located in the neuron body and dendrites, which allowed the neuron morphotype and location in specific cortical layers to be determined. It was shown that MAP2-immunopositive neurons were identifiable in embryonic cortical layer eV as early as the 18th gestational week. By the 25th gestational week, two populations of pyramidal neurons were discernible in the cortical plate, one of them located in layer eV and the other, in layer eIII, which developed later. Since differentiating neurons are known to be more vulnerable than neuroblasts and mature neurons, these results suggest that critical periods for corticofugal and corticocortical populations of pyramidal cells occur at different stages of the second gestational trimester.  相似文献   

8.
The characteristics and distribution of benzodiazepine receptors in individual layers of the visual cortex of adult rats were examined with the 3H-flunitrazepam binding technique employed on intact tissue slices. The different visual cortical layers were separated by cutting serial cryocut sections horizontally to the cortical surface and collecting the slices from each individual cortical layer under anatomical control. Highest benzodiazepine receptor densities were found in layers IV and VI. A moderate receptor density was detected in layer V (80% of highest density). The lowest receptor binding was observed in cortical layers I and II/III, still representing 66% of the highest receptor density. Binding affinities varied slightly between layers with dissociation constants somewhat higher for layers IV to VI in comparison to layers I and II/III. The distinct laminar pattern of benzodiazepine receptors in rat visual cortex suggests a differential neuromodulatory significance of these receptors in each individual cortical layer.  相似文献   

9.
Immunocytochemical techniques have been used to study neuropeptide Y (NPY) distribution in the human visual cortex (Brodman's areas 17, 18 and 19) NYP cell bodies belong mostly to inhibitory (multipolar and bitufted) but also to excitatory (bipolar and some pyramidal) neuronal types. Their distribution is similar in the three cortical areas studied: 20 to 40% of the NPY perikarya are located in the cortical gray matter, mostly in the deep layers, while the remaining 60 to 80% are located in the underlying white matter. Immunoreactive NPY processes form a rich network of intersecting fibers throughout the entire visual cortex. A superficial plexus (layers I and II) and a deep plexus (deep layer V and layer VI) of NPY fibers are present in areas 17, 18 and 19. In area 17, an additional well developed plexus is present in layers IVb and IVc. These plexuses receive branches from long parallel fibers arising from deep cortical layers or underlying white matter and terminating in superficial layers. Local or extrinsic NPY terminals wind around vessels in the cortex as well as in the white matter, and either penetrate them or form clusters of club endings on their walls. Our results suggest a role for NPY in human visual circuitry and in cortical blood flow regulation.  相似文献   

10.
The medial cortex of Psammodromus presents a three-layer organization. Most of the cell bodies are localized in a compact lamina, the cellular layer. Two plexiform layers, superficial and deep, enclose the cellular layer. The most external portion of the superficial plexiform layer is formed by a limiting glial sheet consisting of tanycytic processes that reach the surface of the cortex. Astrocytes are localized close to the glial sheet. There are two types of axon terminals within the superficial plexiform layer: type S with spheric vesicles and type F with pleomorphic vesicles. Large solitary neurons are present at middle levels of the layer. In the cellular layer there are three neuronal types: large neurons with dispersed chromatin, neurons of medium size with chromatin clumps, and electron-dense neurons. Protoplasmic astrocytes are found superficially in this layer. In the deep plexiform layer numerous neuronal cell bodies are visible, and three types can be distinguished: horizontal fusiform cells, globous neurons with indented nuclei, and electron-dense neurons. Protoplasmic astrocytes are present throughout this layer. Oligodendrocytes are more frequent in the inner third of the layer, often related to fibers of a thick fascicle running in contact with the ependyma, the alveus. The ependyma is formed by a single row of prismatic cells bordering the lateral ventricle.  相似文献   

11.
The goal of the work was to study changes of structural and cytochemical organization of activated hippocampal astrocytes in the rat exposed to transient global ischemia of the brain. Intermediate filament proteins immunocytochemistry revealed functional activation of astrocytes of dorsal hippocampus 7 days following the ischemia, which was manifested as changes of size and shape of the cells and processes and accumulation of intermediate filament proteins GFAP and nestin. This is accompanied by formation of two populations of activated astrocytes: GFAP-positive astrocytes, which are more abundant and nestin-positive astrocytes distributed predominantly in the area of massive loss of neural cells. The obtained data suggest that astrocytes activated post-ischemically obtain properties typical for immature cells of nervous tissue, but lack of morphological signs of dedifferentiation do not support their contribution to reparative neurogenesis in the hippocampus.  相似文献   

12.
In the cingulate cortex of rats the marginal glia is predominantly presented as fibrillar astrocytes, their bodies are situated immediately at the surface. Numerous axons, dendrites, synapses and myelinated fibers are often arranged near the very surface and are separated from it with only 1-2 thin processes of glial cells. Along the whole cortical surface one can see a limiting membrane--a layer of non-cellular substance, situating at the distance of 60-100 mcm from plasmalemmas of the marginal astrocytes. Using ruthenium red, it is possible to reveal the glycocalix layer on the surface of the limiting membrane, as well as cords of the electron opaque substance, that connect it with plasmolemma of the superficial astrocytes. Three types of the cingulate cortex surface are described in rats: superficial areas to which cells of the pia mater membrane adjoin; areas where cells of the pia mater membrane are situated at various distance from the cortical surface and areas of close adjoining of the right and left hemispheres of the cerebrum. Sometimes the cleft between the hemispheres is completely reduced, and narrow lamellar-like cells of the pia mater membrane are tightly inserted between the limiting membranes of both hemispheres or adjoin the blood vessel, situating between the hemispheres. At the surface numerous gap and desmosome-like junctions are observed. This is especially important at the border where the media are separated. At injection of neurotoxin 6-hydroxydopamine certain ultrastructural rearrangements are noted in cytoplasm of the marginal astrocytes, changes in the number and extension of intercellular junctions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Investigating topography and structure of elements in the layer I of the fields 4, 3, 1 of the human neocortex (4 cases) and M1, Ep zones in the cat neocortex (5 cases) by means of modified methods of Golgi, Peters and Kluver-Barerr, it became possible to work out an original classification of astrocytes and to reveal the neurono-glio-vascular complexes consisting of the neuronal base and two glial-vascular links. Three main varieties of protoplasmic astrocytes are determined: short-rayed with a long dendrite-like process, short-rayed cap-like and long-rayed with a double bush of branchings. In the latter forms axon-like processes are revealed, some of them make complex basket-like branchings and each of them surrounds a group of neuronal bodies, predominantly the pyramidal ones in the layer III. Distribution of the marginal glia and the three mentioned varieties of astrocytes is subjected to a single plan. The raws of gliocytes along the horizontal and vertical lines are connected with each other and with the neuronal elements. Peculiar receptive apparatuses performing interrelation are ball-like formations revealed on the apical dendrites of the pyramidal neurons. The information that gets into them is processed automatically. Problems concerning the importance of the ball-like formations in integration of the layer I is discussed, and the role of the glial cells with axon-like processes in the active transport of various substances and in regulating metabolism of the pyramidal cells of the layer III is also dealt with.  相似文献   

14.
A crucial role for Olig2 in white matter astrocyte development   总被引:5,自引:0,他引:5  
  相似文献   

15.
16.
17.
A Gocht 《Acta anatomica》1992,145(4):434-441
The carbohydrate epitope 3-fucosyl-N-acetyllactosamine (CD15) is involved in cell-to-cell recognition processes in various tissues. In the present study the subcellular localization of CD15 was immunocytochemically studied in normal and pathological central nervous system fiber tracts of humans and rats. In normal human white matter of the brain, CD15 immunoreactivity was found on the cell surface of astrocytes and within the cytoplasm of oligodendrocytes. In freshly demyelinated lesions of two human diseases (central pontine myelinolysis and multiple sclerosis) strong cytoplasmic CD15 staining was observed in reactive astrocytes. In normal rats CD15 immunostaining was restricted to the surface of astrocytes. In crush-induced lesions of rat optic nerves, however, astrocytes showed a cytoplasmic localization of CD15, 4 and 6 days after injury. In conclusion, abnormal localization of CD15 in reactive astrocytes may be related to altered functional states of these cells during disease processes.  相似文献   

18.
Recent data suggests that metallothioneins (MTs) are major neuroprotective proteins within the CNS. In this regard, we have recently demonstrated that MT-IIA (the major human MT-I/-II isoform) promotes neural recovery following focal cortical brain injury. To further investigate the role of MTs in cortical brain injury, MT-I/-II expression was examined in several different experimental models of cortical neuron injury. While MT-I/-II immunoreactivity was not detectable in the uninjured rat neocortex, by 4 days, following a focal cortical brain injury, MT-I/-II was found in astrocytes aligned along the injury site. At latter time points, astrocytes, at a distance up to several hundred microns from the original injury tract, were MT-I/-II immunoreactive. Induced MT-I/-II was found both within the cell body and processes. Using a cortical neuron/astrocyte co-culture model, we observed a similar MT-I/-II response following in vitro injury. Intriguingly, scratch wound injury in pure astrocyte cultures resulted in no change in MT-I/-II expression. This suggests that MT induction was specifically elicited by neuronal injury. Based upon recent reports indicating that MT-I/-II are major neuroprotective proteins within the brain, our results provide further evidence that MT-I/-II plays an important role in the cellular response to neuronal injury.  相似文献   

19.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The protein NDRG2 (N-myc downregulated gene 2) is expressed in astrocytes. We show here that NDRG2 is located in the cytosol of protoplasmic and fibrous astrocytes throughout the mammalian brain, including Bergmann glia as observed in mouse, rat, tree shrew, marmoset and human. NDRG2 immunoreactivity is detectable in the astrocytic cell bodies and excrescencies including fine distal processes. Glutamatergic and GABAergic nerve terminals are associated with NDRG2 immunopositive astrocytic processes. Müller glia in the retina displays no NDRG2 immunoreactivity. NDRG2 positive astrocytes are more abundant and more evenly distributed in the brain than GFAP (glial fibrillary acidic protein) immunoreactive cells. Some regions with very little GFAP such as the caudate nucleus show pronounced NDRG2 immunoreactivity. In white matter areas, NDRG2 is less strong than GFAP labeling. Most NDRG2 positive somata are immunoreactive for S100ß but not all S100ß cells express NDRG2. NDRG2 positive astrocytes do not express nestin and NG2 (chondroitin sulfate proteoglycan 4). The localization of NDRG2 overlaps only partially with that of aquaporin 4, the membrane-bound water channel that is concentrated in the astrocytic endfeet. Reactive astrocytes at a cortical lesion display very little NDRG2, which indicates that expression of the protein is reduced in reactive astrocytes. In conclusion, our data show that NDRG2 is a specific marker for a large population of mature, non-reactive brain astrocytes. Visualization of NDRG2 immunoreactive structures may serve as a reliable tool for quantitative studies on numbers of astrocytes in distinct brain regions and for high-resolution microscopy studies on distal astrocytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号