首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

2.
3.
4.
5.
Functional significance of neural projections from the hypothalamic dorsomedial nucleus (DMN) to the paraventricular nucleus (PVN) was investigated using surgical lesion of the central part of the DMN. Under basal conditions, DMN lesion resulted in a decrease in magnocellular vasopressin (AVP) mRNA levels in the PVN, rise in pituitary proopiomelancortin (POMC) mRNA concentrations and elevated plasma corticosterone levels. Corticotropin-releasing hormone (CRH) mRNA levels remained unaffected. In sham operated animals, osmotic stress induced by hypertonic saline injection failed to modify AVP mRNA, but increased CRH and POMC mRNA levels and peripheral hormone release. The rise in CRH mRNA levels after osmotic stress was potentiated in DMN lesioned animals. Thus, the DMN participates in the control of hypothalamic peptide gene expression and pituitary adrenocorticotropic function.  相似文献   

6.
In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found. However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs. These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore, we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated by ACTH secretagogues. This work was supported by the Jichi Medical University young investigator award.  相似文献   

7.
Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part because of the altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, and bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN, but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, as GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN corticotrophin-releasing factor neurons, an essential component of the amplified HPA response to stress by nicotine.  相似文献   

8.
By the method of quantitative immunohistochemistry there has been studied expression of corticotrophin-releasing hormone (CRH) and vasopressin in hypothalamic paraventricular nucleus (PVN) of prenatally stressed rats in the experimental model of the posttraumatic stress disorder-the paradigm “stress-restress”. The prenatal stress was modeled by immobilization of pregnant female rats for 1 h from the 15th to the 19th day of pregnancy. It has been shown that in sexually mature males-descendants of stressed mothers-a decrease in immunoreactivity to CRH and vasopressin is observed in the parvocellular and magnocellular PVN areas 10 days after the restress. In the control group males born by intact mothers the level of immunoreactivity to CRH was increased in both PVN areas, whereas with respect to vasopressin-in the magnocellular area. Only in the prenatally stressed males there is detected a decrease in the corticosterone level in the blood plasma 10 days after the restress. It is concluded that in the control group males the manifestation of the pathological state in the paradigm “stress-restress” consists in hyperactivation of the hypothalamic chain of regulation of the hypothalamus-pituitary-adrenocortical system, whereas in the prenatally stressed animals, on the contrary, there is observed a decrease in activity both of the central (PVN) and of the peripheral (adrenal cortex) chain of this hormonal axis.  相似文献   

9.
Corticotropin-releasing hormone (CRH)-containing neurons in the hypothalamic paraventricular nucleus (PVN) are known to be activated during physical or psychological stress, and play an important role as one of the central activators of integrated stress response. Physical exercise has also been suggested as one of the stressors activating CRH neurons in the PVN. Spontaneous wheel running (SWR) has recently been reported to result in improved mental health or mood, unlike treadmill running that commonly forces the animal to run. Thus, forced running may strongly induce an activation of CRH neurons compared with spontaneous running, and spontaneous running may not represent a strong stressor. However, whether the effects of spontaneous running on activation of CRH neurons in the PVN differ from those of forced running is unknown. The present study examined the activity of CRH neurons in 1-h forced wheel running (FWR) and SWR using c-Fos/CRH immunohistochemistry in male Wistar rats. No significant differences in 1-h running distance were observed between FWR and SWR, indicating that amount of work was almost equal between exercises. Number of double-labeled neurons for c-Fos and CRH in the PVN was markedly higher in FWR than in SWR. In addition, no significant differences in Fos expression in the LC, which is related to various stress responses, were found between FWR and SWR. These results indicate that FWR strongly activates CRH neurons in the PVN compared with SWR, suggesting that spontaneous running is not an intense stressor even though running distance does not differ significantly from forced running.  相似文献   

10.
Water-restricted (WR) rats exhibit a rapid suppression of plasma corticosterone following drinking. The present study monitored Fos-like immunoreactivity (Fos) to assess the effect of WR-induced drinking on the activity of vasopressin (VP)-positive magnocellular and parvocellular neurons and corticotropin-releasing hormone (CRH)-positive parvocellular neurons in the paraventricular nucleus of the hypothalamus. Adult male rats received water for 30 min (WR) in the post meridiem (PM) each day for 6 days and were killed without receiving water or at 1 h after receiving water for 15 min. In WR rats, Fos increased in VP magnocellular and parvocellular neurons but not CRH neurons. After drinking, Fos was reduced in VP magnocellular and parvocellular neurons but did not change in CRH neurons. To assess the severity of osmotic stress, rats were sampled throughout the final day of WR. Plasma osmolality, hematocrit and plasma VP were increased throughout the day before PM rehydration, and plasma ACTH and corticosterone were elevated at 1230 and 1430, respectively, showing that WR activates hypothalamic-pituitary-adrenal activity during the early PM before the time of rehydration. To determine the effects of WR-induced drinking on CRH neurons activated by acute stress, WR rats underwent restraint. Restraint increased plasma ACTH and corticosterone and Fos in CRH neurons; although rehydration reduced plasma ACTH and Fos expression in VP neurons, Fos in CRH neurons was not affected. These results suggest that inhibition of VP magnocellular and parvocellular neurons, but not CRH parvocellular neurons, contributes to the suppression of corticosterone after WR-induced drinking.  相似文献   

11.
In stressed animals, several brain regions (e.g., hypothalamic paraventricular nucleus [PVN]) exhibit neuronal activation, which increases plasma adrenocorticotropic hormone (ACTH) and glucocorticoids. We previously reported that so-called "green odor" inhibits stress-induced activation of the hypothalamo-pituitary-adrenocortical axis (HPA axis) and thereby prevents the chronic stress-induced disruption of the skin barrier. Here, we investigated whether rose essential oil, another sedative odorant, inhibits the stress-induced 1) increases in PVN neuronal activity in rats and plasma glucocorticoids (corticosterone [CORT] in rats and cortisol in humans) and 2) skin-barrier disruption in rats and humans. The results showed that in rats subjected to acute restraint stress, rose essential oil inhalation significantly inhibited the increase in plasma CORT and reduced the increases in the number of c-Fos-positive cells in PVN. Inhalation of rose essential oil significantly inhibited the following effects of chronic stress: 1) the elevation of transepidermal water loss (TEWL), an index of the disruption of skin-barrier function, in both rats and humans and 2) the increase in the salivary concentration of cortisol in humans. These results suggest that in rats and humans, chronic stress-induced disruption of the skin barrier can be limited or prevented by rose essential oil inhalation, possibly through its inhibitory effect on the HPA axis.  相似文献   

12.
Abnormal function of the neuroendocrine stress system has been implicated in the behavioral impairments observed following brain ischemia. The current study examined long-term changes in stress signal regulation 30 days following global cerebral ischemia. Experiment 1 investigated changes in the expression of corticotropin releasing hormone (CRH) and its subtype 1 receptor (CRHR1), glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN), the central nucleus of the amygdala (CeA), and the CA1 subfield of the hippocampus. Tyrosine hydroxylase (TH) was determined at the locus coeruleus (LC). Experiment 2 investigated the role of central CRHR1 activation on corticosterone (CORT) secretion at multiple time intervals following global ischemia after exposure to an acute stressor. Findings from Experiment 1 demonstrated a persistent increase in GR, CRH and CRHR1 immunoreactivity (ir) at the PVN, reduced GR and CRHR1 expression in pyramidal CA1 neurons, and increased LC TH expression in ischemic rats displaying working memory errors in the radial arm Maze. Findings from Experiment 2 revealed increased CORT secretion up to 7 days, but no longer present 14 and 21 days post ischemia. However upon an acute restraint stress induced 27 days following reperfusion, ischemic rats had increased plasma CORT secretions compared to sham-operated animals, suggesting HPA axis hypersensitivity. Antalarmin (2 μg/2 μl) pretreatment significantly attenuated post ischemic elevation of basal and stress-induced CORT secretion. These findings support persistent neuroendocrine dysfunctions following brain ischemia likely to contribute to emotional and cognitive impairments observed in survivors of cardiac arrest and stroke.  相似文献   

13.
Various kinds of stress cause neuroendocrine responses such as corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) release from parvocellular division of the paraventricular nucleus (PVN) and activation of the hypothalamo-pituitary adrenal (HPA) axis. We examined the effects of acute and chronic stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using chronic salt loading as an osmotic stimulation, intraperitoneal administration of lipopolysaccharide (LPS) as acute inflammatory stress and adjuvant arthritis (AA) as chronic inflammatory/nociceptive stress. Salt loading caused a marked increase in the eGFP gene expression and eGFP fluorescence in the supraoptic nucleus, magnocellular division of the PVN and internal layer of the median eminence (ME). Administration of LPS caused increased fluorescence in parvocellular division of the PVN and external layer of the ME. AA rats revealed an increased expression of the eGFP gene and eGFP fluorescence in both magnocellular and parvocellular divisions of the PVN and both internal and external layers of the ME. On the other hand, the levels of the CRH gene expression in parvocellular division of the PVN were significantly decreased as AA developed, though plasma concentrations of corticosterone were significantly increased. These results indicate that AVP-eGFP transgenic rats enable the detection of changes in AVP expression more easily than by using procedures such as immunohistochemistry. We propose that AVP-eGFP transgenic rats represent a useful animal model for further understanding of the physiology of AVP expression in the hypothalamo-pituitary system under various physiological conditions, including various kinds of stress.  相似文献   

14.
15.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.  相似文献   

16.
Inhibition of stress-induced elevations in brain-derived neurotrophic factor (BDNF) or its primary receptor tyrosine-related kinase B (TrkB) within the reward pathway may modulate vulnerability to anxiety and mood disorders. The current study examined the role of BDNF/TrkB signaling on biochemistry and behavior under basal conditions and following exposure to a 10-day heterotypic stress paradigm in male rats. Effects of intra-accumbal administration of TrkB antagonist ANA-12 (0.25 μg/0.5 μl/min) on anxiety, and expression of Trk-B, corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway were determined. Notably, ANA-12 attenuated anxiety-like behavior in stress rats while increasing anxiety in the non-stress group in the elevated plus maze (EPM). At the neurochemical level, ANA-12 blocked the increased vGluT2 and CRH expressions in the hypothalamic PVN and basolateral amygdala in stress rats, while it enhanced vGluT2 and CRH expressions in non-stress rats. ANA-12 also showed state-dependent effects at the NAc core, attenuating TrkB-ir in non-stress rats while reversing reduced expression in stressed rats. At the cingulate cortex, ANA-12 normalized stress-induced increase in TrkB expression. Notably, ANA-12 showed region-specific effects on GR-ir at the NAc core and shell, with increased GR-ir in non-stress rats, although the drug attenuated stress-induced GR-ir expression only in the core portion of the NAc, while having no impact at the cingulate cortex. Elevated blood CORT levels post-stress was not influenced by ANA-12 treatment. Together, these findings suggest that BDNF-mediated TrkB activation exerts differential impact in regulating emotional response under basal and stress conditions.  相似文献   

17.
The role of hypothalamic structures in the regulation of chronic stress responses was studied by lesioning the mediobasal hypothalamus or the paraventricular nucleus of hypothalamus (PVH). Rats were acutely (60 min) and/or repeatedly (for 7 days) restrained. In controls, a single restraint elevated the plasma adrenocorticotropin (ACTH), corticosterone, and prolactin levels. Repeated restraint produced all signs of chronic stress, including decreased body and thymus weights, increased adrenal weight, basal corticosterone levels, and proopiomelanocortin (POMC) mRNA expression in the anterior pituitary. Some adaptation to repeated restraint of the ACTH response, but not of other hormonal responses, was seen. Lesioning of the mediobasal hypothalamus abolished the hormonal response and POMC mRNA activation to acute and/or repeated restraint, suggesting that the hypothalamo-pituitary-adrenal axis activation during repeated restraint is centrally driven. PVH lesion inhibited the ACTH and corticosterone rise to the first restraint by approximately 50%. In repeatedly restrained rats with PVH lesion, the ACTH response to the last restraint was reduced almost to basal control levels, and the elevation of POMC mRNA level was prevented. PVH seems to be important for the repeated restraint-induced ACTH and POMC mRNA stimulation, but it appears to partially mediate other restraint-induced hormonal changes.  相似文献   

18.
19.
The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.  相似文献   

20.
Running training on the treadmill increases the resting hypothalamic corticotropin-releasing hormone (CRH) content in rats, though is still unknown whether and how it occurs in the parvocellular region of the hypothalamic paraventricular nucleus (PVN) where is a predominant region of pituitary-adrenal activity and where CRH and arginine vasopressin (AVP) are colocalized. We thus aimed at examining whether treadmill training would alter the CRH and AVP mRNA levels in the PVN at rest and during acute running with different lengths of a training regime. Male Wistar rats were subjected to treadmill running (approximately 25 m/min, 60 minutes/day, 5 times/week) for training regimes of 0, 1, 2 or 4 weeks. All training regimes induced an adrenal hypertrophy. Plasma corticosterone levels before acute running increased with lengthening the training period. Four weeks of training produced a significant increase in the resting CRH, but not AVP, mRNA levels in the PVN though relatively shorter training regimes did not. Acute responses of lactate and ACTH release were reduced after 2 and 4 weeks of training, respectively. The responsive PVN CRH mRNA level to acute running decreased with 4 weeks of training but increased with relatively shorter training regimes. These results indicate that running training changes the PVN CRH biosynthetic activity with the regime lasting for 4 weeks, which follows adaptive changes in adrenal functions. Thus, running training-induced changes in hypothalamic CRH activity would originate from the PVN and be induced according to the training period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号