首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Seliger B  Kellner R 《Proteomics》2002,2(12):1641-1651
Recently proteome analysis has rapidly developed in the post-genome era and is now widely accepted as a complementary technology to genetic profiling. The improvement in the technology of both two-dimensional electrophoresis (2-DE) analysis as well as protein identification has made proteomics a valuable and powerful tool to study human diseases. A combination of conventional proteome analysis with serology has been developed as a promising experimental approach for the discovery of serological markers in different malignancies. However, the design of proteome-based studies has to be carefully performed since there are a number of critical needs for systematic and reproducible proteome analysis. In particular, the selection of tissue and its preparation represent an important step in proteome analysis. Besides the preparation of protein samples, the 2-DE and protein identification is a further critical issue. So far proteome-based technologies have been successfully used in tumor immunnology for the identification of tumor-specific autoantigens. Similarly, this technology has been employed for the detection of virulence factors, antigens and vaccine candidates in infectious diseases, as well as for the identification of diagnostic and prognostic markers, suggesting that proteome-based analysis is a promising tool for the identification of prognostic, diagnostic markers as well as for novel therapeutic targets which could be used for treatment of diseases. The integration of proteome-based approaches with data from genomic or genetic profiling will lead to a better understanding of different diseases, which will then contribute to the direct translation of the research findings into clinical practice.  相似文献   

2.
Green fluorescent protein (GFP) is the most commonly used reporter of expression in cell biology despite evidence that it affects the cell physiology. The molecular mechanism of GFP-associated modifications has been largely unexplored. In this paper we investigated the proteome modifications following stable expression of GFP in breast cancer cells (MDA-MB-231). A combination of three different proteome analysis methods (2-DE, iTRAQ, label-free) was used to maximise proteome coverage. We found that GFP expression induces changes in expression of proteins that are associated with protein folding, cytoskeletal organisation and cellular immune response. In view of these findings, the use of GFP as a cell reporter should be carefully monitored.  相似文献   

3.
Lung diseases are essentially multi-factorial diseases that require a global analysis, and thus, cannot be understood through the sole analysis of individual or small numbers of genes. Proteome analysis has rapidly developed in the post-genome era and is now widely accepted as the obligated complementary technology for genetic profiling. It has been shown to be a powerful tool for the study of human diseases and for identifying novel prognostic, diagnostic and therapeutic markers. During last years, proteomic approaches applied to lung diseases are centred on the analysis of proteins in samples, such as cell cultures, biopsies and physiological fluids like serum and, especially, bronchoalveolar lavage fluid (BALF). BALF is presently the most common way of sampling the components of the epithelial lining fluid (ELF) and the most faithful reflect of the protein composition of the pulmonary airways. This review focuses on the state of the investigations of BALF proteome and its powerful contribution both to a better knowledge of the lung structure at the molecular level and to the study of lung disorders at the clinical level.  相似文献   

4.
5.
The discovery that many inherited diseases are linked to interacting nuclear envelope proteins has raised the possibility that human genetic studies could be assisted by a fusion with proteomics. Two principles could be applied. In the first, the proteome of an organelle associated with a genetically variable disease is determined. The chromosomal locations of the genes encoding the organellar proteins are then determined. If a related disease is linked to a large chromosomal region that includes a gene identified in the organelle, then that gene has an increased likelihood of causing the disease. Directly sequencing this allele from patient samples might speed identification compared with further genetic linkage studies as has been demonstrated for multiple diseases associated with the nuclear envelope. The second principle is that if an organelle has been implicated in the pathology of a particular disorder, then comparison of the organelle proteome from control and patient cells might highlight differences that could indicate the causative protein. The distinct, tissue-specific pathologies associated with nuclear envelope diseases suggest that many tissues will have a set of disorders linked to this organelle, and there are numerous as yet unmapped or partially mapped syndromes that could benefit from such an approach.  相似文献   

6.
7.
Aging and age‐related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin‐mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half‐lives and protein turnover at the level of individual proteins in vivo. For large‐scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long‐lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age‐related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.  相似文献   

8.
Function and dysfunction of the PI system in membrane trafficking   总被引:1,自引:0,他引:1  
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes.  相似文献   

9.
The production of newly synthesized proteins is a key process of protein homeostasis that initiates the biosynthetic flux of proteins and thereby determines the composition, stability and functionality of the proteome. Protein synthesis is highly regulated on multiple levels to adapt the proteome to environmental and physiological challenges such as aging and proteotoxic conditions. Imbalances of protein folding conditions are sensed by the cell that then trigger a cascade of signaling pathways aiming to restore the protein folding equilibrium. One regulatory node to rebalance proteostasis upon stress is the control of protein synthesis itself. Translation is reduced as an immediate response to perturbations of the protein folding equilibrium that can be observed in the cytosol as well as in the organelles such as the endoplasmatic reticulum and mitochondria. As reduction of protein synthesis is linked to life span increase, the signaling pathways regu-lating protein synthesis might be putative targets for treatments of age-related diseases. Eukaryotic cells have evolved a complex system for protein synthesis regulation and this review will summarize cellular strategies to regulate mRNA translation upon stress and its impact on longevity.  相似文献   

10.
A better understanding of disease progression is beneficial for early diagnosis and appropriate individual therapy. Many different approaches for statistical modelling of cumulative disease progression have been proposed in the literature, including simple path models up to complex restricted Bayesian networks. Important fields of application are diseases such as cancer and HIV. Tumour progression is measured by means of chromosome aberrations, whereas people infected with HIV develop drug resistances because of genetic changes of the HI‐virus. These two very different diseases have typical courses of disease progression, which can be modelled partly by consecutive and partly by independent steps. This paper gives an overview of the different progression models and points out their advantages and drawbacks. Different models are compared via simulations to analyse how they work if some of their assumptions are violated. In a simulation study, we evaluate how models perform in terms of fitting induced multivariate probability distributions and topological relationships. We often find that the true model class used for generating data is outperformed by either a less or a more complex model class. The more flexible conjunctive Bayesian networks can be used to fit oncogenetic trees, whereas mixtures of oncogenetic trees with three tree components can be well fitted by mixture models with only two tree components.  相似文献   

11.
Complex chromosome aberrations (any exchange involving three or more breaks in two or more chromosomes) are effectively induced in peripheral blood lymphocytes (PBL) after exposure to low doses (mostly single particles) of densely ionising high-linear energy transfer (LET) alpha-particle radiation. The complexity, when observed by multiplex fluorescence in situ hybridisation (m-FISH), shows that commonly four but up to eight different chromosomes can be involved in each rearrangement. Given the territorial organisation of chromosomes in interphase and that only a very small fraction of the nucleus is irradiated by each alpha-particle traversal, the aim of this study is to address how aberrations of such complexity can be formed. To do this, we applied theoretical "cycle" analyses using m-FISH paint detail of PBL in their first cell division after exposure to high-LET alpha-particles. In brief, "cycle" analysis deconstructs the aberration "observed" by m-FISH to make predictions as to how it could have been formed in interphase. We propose from this that individual high-LET alpha-particle-induced complex aberrations may be formed by the misrepair of damaged chromatin in single physical "sites" within the nucleus, where each "site" is consistent with an "area" corresponding to the interface of two to three different chromosome territories. Limited migration of damaged chromatin is "allowed" within this "area". Complex aberrations of increased size, reflecting the path of alpha-particle nuclear intersection, are formed through the sequential linking of these individual sites by the involvement of common chromosomes.  相似文献   

12.
Proper regulation of protein homeostasis (proteostasis) is essential to maintain cellular fitness. Proteome stress causes imbalance of the proteostasis, leading to various diseases represented by neurodegenerative diseases, cancers, and metabolic disorders. The biosensor community recently embarked on the development of proteome stress sensors to report on the integrity of proteostasis in live cells. While most of these sensors are based on metastable mutants of specific client proteins, a recent sensor takes advantage of the specific association of heat shock protein 27 with protein aggregates and exhibits a diffusive to punctate fluorescent change in cells that are subjected to stress conditions. Thus, heat shock proteins can be also used as a family of sensors to monitor proteome stress.  相似文献   

13.
蛋白微阵列技术及其应用   总被引:5,自引:0,他引:5  
蛋白质微阵列是即基因芯片技术之后 ,又一重大的技术突破。它在蛋白质组学的研究中将起重要作用 ,可以用于疾病诊断、毒理学和药理学研究和环境监测等方面。它具有高通量、自动化、灵敏度高和可用于多元分析等优点。就蛋白微阵列的原理、相关的制备方法与检测技术及其应用等方面进行了阐述 ,并对现阶段该技术存在的不足和发展前景进行了讨论。  相似文献   

14.
There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator, and von Willebrand factor, and thus, constituting potential biomarkers for inflammatory response.  相似文献   

15.
Today, proteomics usually compares clinical samples by use of bottom-up profiling with high resolution mass spectrometry, where all protein products of a single gene are considered as an integral whole. At the same time, proteomics of proteoforms, which considers the variety of protein species, offers the potential to discover valuable biomarkers. Proteoforms are protein species that arise as a consequence of genetic polymorphisms, alternative splicing, post-translational modifications and other less-explored molecular events. The comprehensive observation of proteoforms has been an exclusive privilege of top-down proteomics. Here, we review the possibilities of a bottom-up approach to address the microheterogeneity of the human proteome. Special focus is given to shotgun proteomics and structure-based bioinformatics as a source of hypothetical proteoforms, which can potentially be verified by targeted mass spectrometry to determine the relevance of proteoforms to diseases.  相似文献   

16.
Protein complexes may well be the most relevant molecular units of cellular function. The activities of protein complexes have to be regulated both in time and space to integrate within the overall cell programs. The cell can be compared to a factory orchestrating individual assembly lines into integrated networks fulfilling particular and superimposed tasks. Recent proteome-wide studies provide insight into the properties of cellular protein complexes, their modular nature, their interaction with other complexes and the resulting preliminary organization chart of the proteome.  相似文献   

17.
Antibody‐based microarrays is a rapidly evolving technology that has gone from the first proof‐of‐concept studies to more demanding proteome profiling applications, during the last years. Miniaturized microarrays can be printed with large number of antibodies harbouring predetermined specificities, capable of targeting high‐ as well as low‐abundant analytes in complex, nonfractionated proteomes. Consequently, the resolution of such proteome profiling efforts correlate directly to the number of antibodies included, which today is a key limiting factor. To overcome this bottleneck and to be able to perform in‐depth global proteome surveys, we propose to interface affinity proteomics with MS‐based read‐out, as outlined in this technical perspective. Briefly, we have defined a range of peptide motifs, each motif being present in 5–100 different proteins. In this manner, 100 antibodies, binding 100 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 104 individual molecules, i.e. around 50% of the nonredundant human proteome. Notably, these motif‐specific antibodies would be directly applicable to any proteome in a specie independent manner and not biased towards abundant proteins or certain protein classes. The biological sample is digested, exposed to these immobilized antibodies, whereby motif‐containing peptides are specifically captured, enriched and subsequently detected and identified using MS.  相似文献   

18.
19.
By using the in vitro selection method SELEX against the complex mixture of GLA proteins and utilizing methods to deconvolute the resulting ligands, we were able to successfully generate 2'-ribo purine, 2'-fluoro pyrimidine aptamers to various individual targets in the GLA protein proteome that ranged in concentration from 10 nM to 1.4 microM in plasma. Perhaps not unexpectedly, the majority of the aptamers isolated following SELEX bind the most abundant protein in the mixture, prothrombin (FII), with high affinity. We show that by deselecting the dominant prothrombin aptamer the selection can be redirected. By using this DeSELEX approach, we were able to shift the selection toward other sequences and to less abundant protein targets and obtained an aptamer to Factor IX (FIX). We also demonstrate that by using an RNA library that is focused around a proteome, purified protein targets can then be used to rapidly generate aptamers to the protein targets that are rare in the initial mixture such as Factor VII (FVII) and Factor X (FX). Moreover, for all four proteins targeted (FII, FVII, FIX, and FX), aptamers were identified that could inhibit the individual protein's activitity in coagulation assays. Thus, by applying the concepts of DeSELEX and focused library selection, aptamers specific for any protein in a particular proteome can theoretically be generated, even when the proteins in the mixture are present at very different concentrations.  相似文献   

20.
Cerebrospinal fluid (CSF) is considered as the most promising body fluid target for the discovery of biomarkers for early diagnosis of neurodegenerative diseases such as Creutzfeldt–Jakob disease in humans and bovine spongiform encephalopathy in cattle. For the recognition of disease‐associated changes in bovine CSF protein patterns, a detailed knowledge of this proteome is a prerequisite. The absence of a high‐resolution CSF proteome map prompted us to determine all bovine CSF protein spots that can be visualised on 2‐D protein gels. Using state‐of‐the‐art 2‐DE technology for proteome mapping of bovine ante mortem CSF combined with sensitive fluorescent protein staining and MALDI‐TOF/TOF MS for protein identification, a highly detailed 2‐DE map of the bovine CSF proteome was established. Besides the proteins mapped by earlier studies, this map contains 66 different proteins, including 58 which were not annotated in bovine 2‐DE CSF maps before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号