首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of apoM in normal and genetically modified mice   总被引:4,自引:0,他引:4  
A novel human apolipoprotein [apolipoprotein M (apoM)] was recently described and demonstrated to be a lipocalin. We have now examined apoM in wild-type mice and mice with genetically altered lipoprotein metabolism. Liver and kidney showed high mRNA expression, whereas spleen, heart, brain, and testis demonstrated low expression. ApoM gene expression was initiated on embryonic day 10. Western blot analysis of plasma suggested that mouse apoM, like its human counterpart, is secreted with a retained signal peptide, but unlike human apoM it is not glycosylated. Gel filtration of plasma showed apoM to be associated with HDL-sized particles in wild-type and apoA-I-deficient mice and with HDL- and LDL-sized particles in LDL receptor-deficient mice, whereas apoM was mainly found in VLDL-sized particles in high-fat, high-cholesterol-fed apoE-deficient mice. The plasma concentration of apoM was similar in wild-type, LDL receptor-deficient, and apoE-deficient mice but was reduced to 33% in apoA-I-deficient compared with wild-type mice (P = 0.007). These data suggest that apoM mainly associates with HDL in normal mice but also with the pathologically increased lipoprotein fraction in genetically modified mice. The substantially decreased apoM levels in apoA-I-deficient mice suggest a connection between apoM and apoA-I metabolism.  相似文献   

2.
Sphingosine 1-phosphate (S1P) is a vasoactive lipid mediator that is speculated to be involved in various aspects of atherosclerosis. About 70% of circulating plasma S1P is carried on HDL, and several pleiotropic properties of HDL have been ascribed to S1P. In the previous study with human subjects, however, LDL cholesterol or apoB, but not HDL cholesterol or apoA-I, had a significant positive correlation with the plasma S1P level, suggesting that the metabolic pathway for LDL might have some roles in the metabolism of S1P. In this study, we analyzed the association between LDL receptor, an important protein in the clearance of LDL, and circulating S1P. We observed that in LDL receptor-overexpressing mice, the plasma S1P levels as well as apolipoprotein M (apoM), a carrier of S1P, were decreased and that exogenously administered C17S1P bound to apoM-containing lipoproteins was cleared more rapidly. Unlike the situation in wild-type mice, LDL receptor overexpression in apoE-deficient mice did not reduce the plasma S1P or apoM levels, suggesting that apoE might be a ligand for the LDL receptor during the clearance of these factors. The present findings clarify the novel roles of the LDL receptor and apoE in the clearance of S1P, a multifunctional bioactive phospholipid.  相似文献   

3.
Apolipoprotein M (apoM) is a 188 amino acid, 25 kDa protein belonging to the lipocalin protein superfamily. Although predominantly associated with high density lipoprotein, apoM is found in all major lipoprotein classes. To facilitate clinical studies of apoM, we have developed a sandwich ELISA for the measurement of apoM in human plasma. This method has been used to investigate normal apoM variation and to establish reference values for healthy individuals through the measurement of 598 samples from the Nordic Reference Interval Project Bio-bank and Database (NOBIDA) biobank. For women 18-49 years old, the reference interval for apoM was 0.58-1.18 micromol/l, whereas for women 50+ years and for men, the reference range was 0.61-1.30 micromol/l. Correlation studies of apoM with 26 common clinical chemical analytes from the NOBIDA database revealed a marked positive correlation with plasma total cholesterol (r = 0.52) and LDL and HDL cholesterol (r = 0.43 and 0.36, respectively). There was no statistically significant correlation with HDL/total cholesterol ratio or body mass index. In conclusion, a sandwich ELISA for the measurement of apoM in human plasma shows that apoM concentration is strongly correlated to total cholesterol in healthy individuals.  相似文献   

4.
Apolipoprotein M (apoM), a 25 kDa plasma protein belonging to the lipocalin protein family, is predominantly associated with HDL. Studies in mice have suggested apoM to be important for the formation of pre-beta-HDL and to increase cholesterol efflux from macrophage foam cells. Overexpression of human apoM in LDL receptor-deficient mice reduced the atherogenic effect of a cholesterol-rich diet. The aim of the present study was to investigate whether the apoM levels in man predict the risk for coronary heart disease (CHD). ApoM was measured in samples from two separate case-control studies. FINRISK '92 consisted of 255 individuals, of whom 80 developed CHD during follow-up and 175 were controls. The Copenhagen City Heart Study included 1,865 individuals, of whom 921 developed CHD during follow-up and 944 were controls. Correlation studies of apoM concentration with several analytes showed a marked positive correlation with HDL and total cholesterol as well as with apoA-I and apoB. There was no significant difference in mean apoM level between CHD and control subjects in either study. In conditional logistic regression analyses, apoM was not a predictor of CHD events, [odds ratio (95% CI) 0.97 (0.74-1.27) and 0.92 (0.84-1.02), respectively]. In conclusion, no association between apoM and CHD could be found in this study.  相似文献   

5.
Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; approximately 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III, paraoxonase 1, and apoB. ApoM-containing HDL (HDL(apoM+)) contained significantly more free cholesterol than HDL lacking apoM (HDL(apoM-)) (5.9 +/- 0.7% vs. 3.2 +/- 0.5%; P < 0.005) and was heterogeneous in size with both small and large particles. HDL(apoM+) inhibited Cu(2+)-induced oxidation of LDL and stimulated cholesterol efflux from THP-1 foam cells more efficiently than HDL(apoM-). In conclusion, our results suggest that apoM is associated with a small heterogeneous subpopulation of HDL particles. Nevertheless, apoM designates a subpopulation of HDL that protects LDL against oxidation and stimulates cholesterol efflux more efficiently than HDL lacking apoM.  相似文献   

6.
Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom−/−) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom−/− mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5−/−), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5−/− mice. In contrast to Apom−/− mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations.  相似文献   

7.
8.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

9.
The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89–8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.  相似文献   

10.
Apolipoprotein E (apoE) plays important roles in lipid homeostasis, anti-inflammation, and host defense. Since tissue apoE mRNA levels have been reported to decrease during inflammatory responses, we were surprised to find that plasma apoE levels were significantly elevated during septic infections in both humans and mice. This apparent paradox was also observed during lipopolysaccharide-induced acute inflammation in mice: plasma levels of apoE increased up to 4-fold despite sharply decreased apoE gene expression in the liver, macrophages, and extrahepatic tissues. We hypothesized that apoE levels were augmented by decreased plasma clearance. Our analysis revealed that apoE associated principally with HDL in mice and that apoE was cleared from the circulation principally via LDL receptors. The acute inflammatory response decreased LDL receptor expression in the liver and significantly reduced the rate of apoE clearance. In contrast, the same inflammatory stimuli increased LDL receptor expression in macrophages. Our results define a novel acute phase mechanism that increases circulating apoE levels as apoE production decreases. Diminished hepatic LDL receptor expression may thus cooperate with elevated LDL receptor expression in macrophages to facilitate the forward transport of apoE and its associated lipids to these key defense cells.  相似文献   

11.
Apolipoprotein M (apoM), a lipocalin family member, preferentially associates with plasma HDL and binds plasma sphingosine 1-phosphate (S1P), a signaling molecule active in immune homeostasis and endothelial barrier function. ApoM overexpression in ABCA1-expressing HEK293 cells stimulated larger nascent HDL formation, compared with cells that did not express apoM; however, the in vivo role of apoM in HDL metabolism remains poorly understood. To test whether hepatic apoM overexpression increases plasma HDL size, we generated hepatocyte-specific apoM transgenic (APOM Tg) mice, which had an ∼3–5-fold increase in plasma apoM levels compared with wild-type mice. Although HDL cholesterol concentrations were similar to wild-type mice, APOM Tg mice had larger plasma HDLs enriched in apoM, cholesteryl ester, lecithin:cholesterol acyltransferase, and S1P. Despite the presence of larger plasma HDLs in APOM Tg mice, in vivo macrophage reverse cholesterol transport capacity was similar to that in wild-type mice. APOM Tg mice had an ∼5-fold increase in plasma S1P, which was predominantly associated with larger plasma HDLs. Primary hepatocytes from APOM Tg mice generated larger nascent HDLs and displayed increased sphingolipid synthesis and S1P secretion. Inhibition of ceramide synthases in hepatocytes increased cellular S1P levels but not S1P secretion, suggesting that apoM is rate-limiting in the export of hepatocyte S1P. Our data indicate that hepatocyte-specific apoM overexpression generates larger nascent HDLs and larger plasma HDLs, which preferentially bind apoM and S1P, and stimulates S1P biosynthesis for secretion. The unique apoM/S1P-enriched plasma HDL may serve to deliver S1P to extrahepatic tissues for atheroprotection and may have other as yet unidentified functions.  相似文献   

12.
Apolipoprotein M (apoM) is a recently characterized apolipoprotein that is exclusively expressed in the liver and kidney. In plasma it is present predominantly in high-density lipoprotein (HDL). The physiological function of apoM is not yet known. In the present study we investigated relationships between plasma apoM levels and leptin levels, body mass index (BMI), as well as fasting glucose and other lipid parameters in women with a wide range of BMI (18.9-57.1 kg/m(2), n = 51). In univariate analysis, apoM correlated significantly with leptin (r = 0.54, P < 0.001), BMI (r = 0,70, P < 0.001), fasting insulin (r = 0.33, P = 0.025), total cholesterol (r = -0.41, P = 0.016), and LDL-cholesterol (r = -0.39, P = 0.018). The correlations between apoM and cholesterol and between apoM and leptin remained significant after adjustment for the influence of BMI. Forward stepwise multiple regressions when leptin, BMI, insulin, and cholesterol were entered into a model as independent variables and apoM as the dependent variable, showed that cholesterol and leptin were independent predictors of circulating apoM. These two parameters yielded a value of r(2) = 0.28, thereby explaining approximately 30% of the variance in apoM. Hence, we show that apoM is positively related to leptin and negatively related to cholesterol in humans.  相似文献   

13.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

14.
Apolipoprotein (apo) O is a novel apolipoprotein that is present predominantly in high density lipoprotein (HDL). However, overexpression of apoO does not impact on plasma HDL levels or functionality in human apoA-I transgenic mice. Thus, the physiological function of apoO is not yet known. In the present study, we investigated relationships between plasma apoO levels and high-sensitive C-reactive protein (hs-CRP) levels, as well as other lipid parameters in healthy subjects (n = 111) and patients with established acute coronary syndrome (ACS) (n = 50). ApoO was measured by the sandwich dot-blot technique with recombinant apoO as a protein standard. Mean apoO level in healthy subjects was 2.21 ± 0.83 μg/ml whereas it was 4.94 ± 1.59 μg/ml in ACS patients. There were significant differences in plasma level of apoO between two groups (P < 0.001). In univariate analysis, apoO correlated significantly with lg(hsCRP) (r = 0.48, P < 0.001) in ACS patients. Notably, no significant correlation between apoO and other lipid parameters was observed. Logistic regression analysis showed that plasma apoO level was an independent predictor of ACS (OR = 5.61, 95% CI 2.16-14.60, P < 0.001). In conclusion, apoO increased in ACS patients, and may be regarded as an independent inflammatory predictor of ACS patients.  相似文献   

15.
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.  相似文献   

16.
Apolipoprotein M (apoM) is a novel apolipoprotein that is reportedly necessary for preβ HDL formation; however, its detailed function remains unknown. We investigated the biogenesis and properties of apoM and its effects on the initial steps of nascent preβ HDL assembly by ABCA1 in HEK293 cells. Transiently transfected apoM was localized primarily in the endomembrane compartment. Pulse-chase analyses demonstrated that apoM is inefficiently secreted, relative to human serum albumin, and that ∼50% remains membrane-associated after extraction with sodium carbonate, pH 11.5. To investigate the role of apoM in nascent preβ HDL formation, ABCA1-expressing or control cells, transfected with empty vector, apoM, or C-terminal epitope-tagged apoM (apoM-C-FLAG), were incubated with 125I-apoA-I for 24 h. Conditioned media were harvested and fractionated by fast-protein liquid chromatography (FPLC) to monitor HDL particle size. Preβ HDL particles were formed effectively in the absence of apoM expression; however, increased apoM expression stimulated the formation of larger-sized nascent preβ HDLs. Immunoprecipitation with anti-apoA-I antibody followed by apoM Western blot analysis revealed that little secreted apoM was physically associated with preβ HDL. Our results suggest that apoM is an atypical secretory protein that is not necessary for ABCA1-dependent preβ HDL formation but does stimulate the formation of larger-sized preβ HDL. We propose that apoM may function catalytically at an intracellular site to transfer lipid onto preβ HDL during or after their formation by ABCA1.  相似文献   

17.
Obesity, diabetes, insulin resistance, and hyperinsulinemia are frequently associated with a cluster of closely related lipid abnormalities such as low plasma levels of high density lipoprotein (HDL) and elevated levels of triglyceride, both known to increase the risk of developing atherosclerotic disease. The molecular mechanisms linking obesity, insulin resistance, and hyperinsulinemia to low HDL levels are incompletely understood. Here we demonstrate that insulin, through a Foxa2-mediated mechanism, inhibited the expression of apolipoprotein M (apoM), an important determinant of plasma pre-beta-HDL and alpha-HDL concentrations. Obese mice had decreased apoM expression and plasma pre-beta-HDL levels due to inactivation of Foxa2 in hyperinsulinemic states. Nuclear reexpression of Foxa2 with a phosphorylation-deficient mutant Foxa2T156A (Ad-T156A) activated apoM expression and increased plasma pre-beta-HDL and alpha-HDL levels. In contrast, haploinsufficient Foxa2(+/-) mice exhibited decreased hepatic apoM expression and plasma pre-beta-HDL and HDL levels. The increase in plasma HDL levels and pre-beta-HDL formation by Foxa2 was mediated exclusively by apoM, as constitutive active expression of Foxa2 in apoM(-/-) mice had no effect on plasma HDL levels. Our results identify a fundamental mechanism by which insulin regulates plasma HDL levels in physiological and insulin-resistant states and thus have important implications for novel therapeutic approaches to prevent atherosclerosis.  相似文献   

18.
ObjectiveApolipoprotein M (apoM) is an essential transporter of plasma Sphingosine-1-Phosphate (S1P), typically attached to all lipoprotein classes, but with a majority bound to high density lipoproteins (HDL). ApoM-deficient mice display an increased activity in brown adipose tissue and a concomitant fast turnover of triglycerides. In what manner apoM/S1P affect the triglyceride metabolism is however still unknown and explored in the present study.MethodsTriglyceride turnover and potentially associated metabolic pathways were studied in the female human apoM transgenic mouse model (apoM-Tg) with increased plasma apoM and S1P levels. The model was compared with wild type (WT) mice.ResultsApoM-Tg mice had a reduced plasma triglyceride turnover rate and a lower free fatty acid uptake in subcutaneous adipocytes compared to WT mice. Screening for potential molecular mechanisms furthermore revealed a reduction in plasma lipase activity in apoM-Tg animals. Overexpression of apoM also reduced the plasma levels of fibroblast growth factor 21 (FGF21).ConclusionsThe study features the significant role of the apoM/S1P axis in maintaining a balanced triglyceride metabolism. Further, it also highlights the risk of inducing dyslipidaemia in patients receiving S1P-analouges and additionlly emphasizes the apoM/S1P axis as a potential therapeutic target in treatment of hypertriglyceridemia.  相似文献   

19.
Apolipoprotein M (apoM) is predominantly associated with HDL. In this study, it was investigated whether apoM's uncleaved signal peptide is necessary for the protein's ability to associate with lipoproteins. ApoM with a cleavable signal peptide, Q22A, was expressed, together with wild-type apoM, in HEK293 cells. On size-exclusion chromatography, the elution profile of wild-type apoM was similar to that of human HDL-associated plasma apoM. In contrast, the size of the Q22A mutant corresponded to free, unassociated apoM. This strongly indicates that the signal peptide is indeed necessary for apoM's ability to associate with lipid.  相似文献   

20.
Sphingosine 1‐phosphate (S1P) is an important regulator of vascular integrity and immune cell migration, carried in plasma by high‐density lipoprotein (HDL)‐associated apolipoprotein M (apoM) and by albumin. In sepsis, the protein and lipid composition of HDL changes dramatically. The aim of this study was to evaluate changes in S1P and its carrier protein apoM during sepsis. For this purpose, plasma samples from both human sepsis patients and from an experimental Escherichia coli sepsis model in baboons were used. In the human sepsis cohort, previously studied for apoM, plasma demonstrated disease‐severity correlated decreased S1P levels, the profile mimicking that of plasma apoM. In the baboons, a similar disease‐severity dependent decrease in plasma levels of S1P and apoM was observed. In the lethal E. coli baboon sepsis, S1P decreased already within 6–8 hrs, whereas the apoM decrease was seen later at 12–24 hrs. Gel filtration chromatography of plasma from severe human or baboon sepsis on Superose 6 demonstrated an almost complete loss of S1P and apoM in the HDL fractions. S1P plasma concentrations correlated with the platelet count but not with erythrocytes or white blood cells. The liver mRNA levels of apoM and apoA1 decreased strongly upon sepsis induction and after 12 hr both were almost completely lost. In conclusion, during septic challenge, the plasma levels of S1P drop to very low levels. Moreover, the liver synthesis of apoM decreases severely and the plasma levels of apoM are reduced. Possibly, the decrease in S1P contributes to the decreased endothelial barrier function observed in sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号