首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive method was developed for the simultaneous determination of omeprazole and its major metabolites 5-hydroxyomeprazole and omeprazole sulfone in human plasma by HPLC-electrospray mass spectrometry. Following liquid-liquid extraction HPLC separation was achieved on a ProntoSil AQ, C18 column using a gradient with 10 mM ammonium acetate in water (pH 7.25) and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH(+) ions, m/z 346 for omeprazole, m/z 362 for 5-hydroxy-omeprazole and omeprazol-sulfone and m/z 300 for the internal standard (2-{[(3,5-dimethylpyridine-2-yl)methyl]thio}-1H-benzimidazole-5-yl)methanol. The limit of quantification (LOQ) achieved with this method was 5 ng/ml for 5-hydroxyomeprazole and 10 ng/ml for omeprazole and omeprazole-sulfone using 0.25 ml of plasma. Intra- and inter-assay variability was below 11% over the whole concentration range from 5 to 250 ng/ml for 5-hydroxyomeprazol and from 10 to 750 ng/ml for omeprazole and omeprazole-sulfone. The method was successfully applied to the determination of pharmacokinetic parameters of esomeprazole and the two major metabolites after a single dose and under steady state conditions.  相似文献   

2.
A method is described for the quantification of two metabolites of cyclophosphamide, specifically 4-hydroxycyclophosphamide (HCy), and carboxyethylphosphoramide mustard (CEPM). Plasma HCy is derivatized to the phenylhydrazone which is quantitated by LC-MS monitoring the chloride adduct of the derivative. The LLOQ based on material applied to the system is approximately 20 fmol. Plasma CEPM concentration is determined using LC-MS with a deuterated internal standard. Both assays have 50-fold dynamic range and require less than 4h to complete. The development of this rapid analytical method makes it feasible to adjust the dose of cyclophosphamide based on the pharmacokinetic disposition of HCy and CEPM in hopes of decreasing nonrelapse mortality in cancer patients.  相似文献   

3.
A simple, sensitive and selective liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI/MS) method for the determination of simvastatin (I) has been developed. After extraction by ethyl acetate, using lovastatin (II) as internal standard, solutes are separated on a C(18) column with a mobile phase consisting of methanol-water (9:1). Detection is performed on an atmospheric pressure ionization single quadruple mass spectrometer equipped with an ESI interface and operates in positive ionization mode. Simvastatin quantification was realized by computing peak area ratio (I/II) of the extracts analyzed in SIM mode (m/z: 441 and m/z: 427 for I and II, respectively) and comparing them with calibration curve (r=0.9997). Accuracy and precision for the assay were determined by calculating the intra-batch and inter-batch variation at three concentrations 0.1, 5.0, 10.0 ng/ml; the intra batch relative standard deviation (RSD) was less than 10% and ranged from 1.8 to 8.5%, respectively; the inter-batch RSD was less than 20% and ranged from 4.1 to 16.5%. The limit of detection was 0.05 ng/ml.  相似文献   

4.
An HPLC-MRM-MS method was developed for the quantification of 17 small ACE inhibiting (ACEI) peptides in plasma samples collected from human volunteers after the consumption of a peptide-enriched drink. The assay shows the high selectivity and sensitivity necessary to monitor small changes in the levels of the ACEI peptides after consumption of drinks developed to effect lowering of the blood pressure. Four different sample preparation methods were tested and evaluated. The final sample preparation method selected is simple and effective and consists mainly of the removal of proteins by acidification and heating, followed by a large volume injection. Additional sample preparation steps such as solid phase extraction and liquid/liquid partitioning were studied. Although they resulted in cleaner extracts, losses of specific peptides such as SAP were frequently seen. The isotope labeled form of one of the peptides to be quantified, [U(13)C]IPP, was used as an internal standard. The limit of detection of the assay is below 0.01 ng ml(-1). The limit of quantification is between 0.05 and 0.2 ng ml(-1), which is approximately 10% of the expected peptide concentration in plasma based on a normal diet. The intra- and inter-day relative standard deviations for all peptides have shown to be below 25% and the method has an accuracy of better than 75%. The long-term stability is good. At least 200 samples could be analysed before the system had to be cleaned. The assay has been successfully applied to blood samples collected from volunteers during a human trial.  相似文献   

5.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

6.
A multiple-reaction-monitoring LC/MS/MS method for the analysis of nevirapine oxidative metabolites, 2-hydroxynevirapine, 3-hydroxynevirapine, 8-hydroxynevirapine, 12-hydroxynevirapine, and 4-carboxynevirapine, in human plasma was developed and validated. The metabolites were isolated from 50 microL heparinized plasma by enzymatic hydrolysis of the glucuronide conjugates to the free metabolite followed by protein precipitation with acetonitrile. Peaks were quantitated at 3.03 min for the 4-carboxynevirapine metabolite, at 3.72, 4.27, 5.27, and 5.73 min for the positional 2-hydroxynevirapine, 12-hydroxynevirapine, 3-hydroxynevirapine, and 8-hydroxynevirapine metabolites, respectively, and 2.30 min for the internal standard, pirenzepine. The assay was accurate and precise based on assay validation controls over the nominal range of 0.010-1.0 mg/L. The average accuracy at the lowest concentration quality control (QC) sample was 16% (difference from theoretical value) for 8-hydroxynevirapine, all others were closer to their known respective standards. Within- and between-day precisions were within 12% for quality control samples for all five metabolites. Repetitive thawing and freezing did not have an effect on any metabolite through a minimum of three cycles. Thawed samples, remaining in plasma for 4 h before extraction, were within 5% of theoretical value. Stability of the extracted samples on the autosampler at room temperature was evaluated for 48 h and was observed to be within 12% of a fresh analytical sample for 2-hydroxynevirapine and 3-hydroxynevirapine; other metabolites were within 6% of theoretical value. The utility of the analytical method was demonstrated using trough steady-state plasma samples collected from 48 patients in a hepatic impairment study.  相似文献   

7.
A sensitive method was developed to determine fexofenadine in human plasma and urine by HPLC-electrospray mass spectrometry with MDL 026042 as internal standard. Extraction was carried out on C18 solid-phase extraction cartridges. The mobile phases used for HPLC were: (A) 12 mM ammonium acetate in water and (B) acetonitrile. Chromatographic separation was achieved on a LUNA CN column (10 cm x 2.0 mm I.D., particle size 3 microm) using a linear gradient from 40% B to 60% B in 10 min. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH+ ions, m/z 502.3 for fexofenadine and m/z 530.3 for the internal standard. The limit of quantification achieved with this method was 0.5 ng/ml in plasma and 1.0 ng in 50 microl of urine. The method described was successfully applied to the determination of fexofenadine in human plasma and urine in pharmacokinetic studies.  相似文献   

8.
This paper describes a simple, fast and sensitive liquid chromatography-mass spectrometry method for quantification of an anti-thrombocythemic agent, anagrelide in human plasma. The samples were subjected to a liquid-liquid extraction after addition of a buffer and an internal standard. Chromatography was performed on an Inertsil ODS2 column and the extract was injected onto a HPLC system coupled with mass spectrometric detection. Linear responses for standards were observed from 50 to 7500 pg/ml. The accuracy of intra-assay and inter-assay were in the ranges 4.3-4.4% and 4.8-5.6%, respectively. The method is simple and reproducible with a run time of less than 2 min.  相似文献   

9.
10.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

11.
A quantitative assay method by liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) for the simultaneous determination of azelnidipine and its two metabolites, M-1 (aromatized form) and M-2 (hydroxylated form), in human plasma was developed and validated. Plasma samples, each of 1.0mL, were extracted by a single step liquid-liquid extraction using a mixture of ethyl acetate and hexane (1:1, v/v), and analyzed by the LC/ESI-MS/MS method. Three analytes were separated by isocratic elution on a C(18) column, and ionized using a positive ion electrospray ionization source. The ion transitions were monitored in selected reaction monitoring (SRM) mode. The chromatographic run time was 11min per injection, with retention time of 3.6, 10.2 and 6.8min for azelnidipine, M-1 and M-2, respectively. The calibration curves for azelnidipine, M-1 and M-2 well fitted to equations by a weighted (1/X(2)) quadratic regression over the range of 0.5-40.0ng/mL (r(2)>0.9979). The intra- and inter-assay precisions (coefficient of variation: C.V.), calculated from quality control (QC) samples, were less than 8.7 and 8.4%, 3.8 and 4.7%, and 11.9 and 13.9%, respectively, for azelnidipine, M-1 and M-2. The accuracy was within +/-9% for azelnidipine, within +/-7% for M-1 and within +/-16% for M-2. The overall recoveries for azelnidipine, M-1 and M-2 were 68.8-78.6%, 54.3-62.9% and 80.4-89.7%, respectively. All analytes evaluated demonstrated acceptable short-term, long-term, auto-sampler and stock solution stabilities. Furthermore, the method developed was successfully applied to pharmacokinetic studies on azelnidipine, M-1 and M-2 after an oral dose of 16mg CALBLOCK tablets (2mgx8mg tablets) to healthy volunteers.  相似文献   

12.
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity  相似文献   

13.
A rapid and sensitive assay for the determination of dihydroergocryptine (DHEC) in human plasma and urine samples with dihydroergotamine (DHET) as the internal standard was developed. The procedure employs on-line sample preparation using an extraction pre-column and an octadecylsilylsilica (ODS) analytical column. After centrifugation human plasma or urine were injected onto the pre-column, concentrated and extracted, back-flushed onto the analytical column and eluted with a binary methanol--aqueous formic acid gradient. Either determination of DHEC as well of its mono- and dihydroxy-metabolites was performed by measurement of the signal responses from MS detection in the selected reaction monitoring (SRM) mode using the transition of the respective parent ions to the common daughter ion at m/z=270.2 amu. The limit of quantitation (LOQ) for determinations of DHEC in both plasma and urine were 25 pg/ml for injected sample volumes of 400 microl. Proportionality of signal responses versus concentration was accomplished within the range of 25-1000 pg/ml. Recovery of target analyte from plasma was 99%. Mean values of the coefficients of variation (CV) for the target analyte in plasma ranged from 1.7 to 13.8% (within-day) and 5.0 to 9.1% (between-day) and accuracy from 91.7 to 102.6% for the within-day and from 95.8 to 98.8% for the between-day measurements. The corresponding values for determinations in urine were 1.7-14.5% (within-day) and 5.3-11.8% (between-day) for CV and 95.8-110.7% (within-day) and 100.1-104.6% (between-day) for accuracy.  相似文献   

14.
A convenient liquid chromatographic-single quadrupole mass spectrometric (LC-MS) method was developed and validated for the determination of chlorpheniramine maleate (INN name: chlorphenamine) in human plasma. The method had advantages of a single liquid-liquid extraction with diethylether and high sensitivity. The linearity was also excellent over the concentration range of 0.52-20.8 ng/ml of chlorpheniramine maleate. The intra- and inter-day precision and accuracy ranged between 0.0 and 13.9%, showing a good reproducibility. This developed method was successfully applied to analysis of chlorpheniramine maleate in clinical studies.  相似文献   

15.
A rapid and specific liquid chromatographic mass spectrometric (LC-MS-MS) method has been developed for the determination of paroxetine in human plasma. The procedure involves a liquid-liquid extraction of paroxetine and fluoxetine (internal standard) with cyclohexane-ethyl acetate. The standard curve was linear over a working range of 0.2-50 ng/ml. The lower limit of quantitation was 0.2 ng/ml. No endogenous compounds were found to interfere with the analysis. The absolute recovery was 70.8% for paroxetine and 84.1% for the internal standard. The accuracy of inter-assay and intra-assay accuracy was in the ranges -4.8 to -0.5% and -3.4 to 4.8%, respectively. This method proved to be suitable for bioequivalence studies by being simple, selective and reproducible.  相似文献   

16.
Two novel metabolites of benproperine (BPP), 1-[1-methyl-2-[2-(phenylmethyl)phenoxy]ethyl]-3-piperidinol (3-OH-BPP) and 1-[1-methyl-2-[2-(phenylmethyl)phenoxy]ethyl]-4-piperidinol (4-OH-BPP), were confirmed by comparison of retention times and mass spectra with those of synthetic standards using liquid chromatography-tandem mass spectrometry. Selective and sensitive procedures were developed for the simultaneous determination of BPP, 3-OH-BPP and 4-OH-BPP in human plasma and urine. The analytes were extracted from plasma sample and enzymatically hydrolyzed urine samples by liquid-liquid extraction, separated through a Diamonsil C(18) column (150 mm x 4.6 mm i.d.) and determined by tandem mass spectrometry with an electrospray ionization interface in selected reaction monitoring mode. Dextromethorphan was used as internal standard. The mobile phase consisted of acetonitrile-water-formic acid (34:66:1, v/v/v), and flow-rate was 0.5 ml min(-1). This method has a lower limit of quantification (LLOQ) of 60, 4.0 and 4.0 nmol l(-1)for BPP, 3-OH-BPP and 4-OH-BPP in plasma, 4.9, 4.7 and 2.4 nmol l(-1) in urine, respectively. The intra- and inter-run precision were measured to be below 9.2%, and the accuracy was within +/-4.3% for the analytes. The method was successfully used to determine BPP, 3-OH-BPP and 4-OH-BPP in plasma and urine for pharmacokinetic investigation. The results indicated residue of 3-OH-BPP in the body at least 192 h after an oral dose of BPP.  相似文献   

17.
A high-performance liquid chromatographic assay with MS detection has been developed for the quantitative determination of the anti-angiogenic agent CC-5013 in human plasma. Sample pretreatment involved liquid-liquid extraction with acetonitrile/1-chlorobutane (4:1, v/v) solution containing the internal standard, umbelliferone. Separation of the compounds of interest was achieved on a column packed with Waters C18 Nova-Pak material (4 microm particle size; 300 mm x 3.9 mm internal diameter) using acetonitrile, de-ionized water, and glacial acetic acid in ratios of 20:80:0.1 (v/v/v) (pH 3.5) delivered at an isocratic flow rate of 1.00 ml/min. Simultaneous MS detection was performed at m/z 260.3 (CC-5013) and m/z 163.1 (umbelliferone). The calibration curve was fit to a linear response-concentration data over a range of 5-1000 ng/ml using a weighting factor of 1/x. Values for accuracy and precision, obtained from four quality controls analyzed on three different days in replicates of five, ranged from 98 to 106% and from 5.5 to 15.5%, respectively. The method was successfully applied to study the pharmacokinetics of CC-5013 in a cancer patient receiving the drug as single daily dose.  相似文献   

18.
Although methods for the measurement of vitamin D metabolites continue to be developed, few have been properly validated by comparison with methods based on gas chromatography-mass spectrometry, widely accepted as being the definitive methodology. To the best of our knowledge, only three such comparisons have been carried out (14, 42, 83), all three examining HPLC assays for 25-OH-D. This lack of proper validation leads to lack of certainty as to the specificity of many assays widely used for clinical investigation. In our view there is an obvious need for the continuing development of mass fragmentographic assays for vitamin D and its metabolites, primarily for use as reference procedures for the evaluation of less rigorous methodologies. Provided standards, both labeled and unlabeled, become more widely available, development of specific mass fragmentographic assays for any metabolite of vitamin D should be possible. For metabolites where no specific binding protein or antiserum is available, mass fragmentography may be the only alternative.  相似文献   

19.
Cheese intake has been shown to decrease total cholesterol and LDL cholesterol concentrations when compared to butter of equal fat content. An untargeted metabolite profiling may reveal exposure markers of cheese but may also contribute with markers which can help explain how the intake of cheese affects cholesterol concentrations. Twenty-three subjects collected 2 × 24 h urine samples after 6 weeks of cheese and 6 weeks of butter intake with equal amounts of fat in a cross-over intervention study. The samples were analyzed by UPLC-QTOF/MS. A two-step univariate data analysis approach using linear mixed model was applied separately for positive and negative ionization mode: In the first step a total of 44 features related to treatment were identified and in the second step 36 of these features were related to total cholesterol concentrations. Cheese intake resulted in increased urinary indoxyl sulfate, xanthurenic acid, tyramine sulfate, 4-hydroxyphenylacetic acid, isovalerylglutamic acid and several acylglycines including isovalerylglycine, tiglylglycine and isobutyrylglycine when compared to butter intake of equal fat content. The biological mechanisms of action linking the metabolites to cholesterol concentrations need to be further explored.  相似文献   

20.
A high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the quantification of phenprocoumon, warfarin, and their known monohydroxylated metabolites in human plasma and urine was developed using a simple, selective solid-phase extraction scheme. Chromatographic separation was achieved on a reversed-phase Luna C18 column and step gradient elution resulted in a total run time of about 13 min. Limits of quantification (LOQ) were < or = 40 nM for the parent compounds and < or = 25 nM for the metabolites and the limit of detection (LOD) was < or = 2.5 nM for all analytes. Average recovery was 84% (+/- 3.7) and 74% (+/- 13.2) in plasma and urine, respectively. Intra- and inter-day coefficients of variation were < or = 8.6 and < or = 10.6% in plasma and urine, respectively. The method was successfully applied to the analysis of phenprocoumon samples from four healthy volunteers and should prove useful for future comparative studies of warfarin and phenprocoumon pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号