首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.  相似文献   

3.
Exposure to pathogen-associated molecular patterns such as LPS can cause an immune refractory state in mammals known as endotoxin tolerance (ET), resulting in a decreased inflammatory response after pathogen contact. This ET concept was used to reduce the severity of an experimentally-induced clinical mastitis. Cows were pretreated with 1?μg LPS per udder quarter and challenged 72?h (group L72EC) or 240?h (group L240EC) later with 500 CFU Escherichia coli. Pretreated animals showed no leukopenia after challenge, no (L72EC), or only slightly (L240EC), elevated body temperature and significantly reduced systemic and local clinical scores compared with cows that were not pretreated. Whereas an increase of milk somatic cell count after the E. coli challenge was abrogated in L72EC animals, it was significantly delayed in the L240EC group. In both pretreated groups the bacterial load in milk was markedly reduced. Based on the expression of inflammation-related genes in lobulo-alveolar mammary tissue, the tolerizing effect of LPS pretreatment is based on the inhibited up-regulation of inflammatory (TNF-α, IL-6, CXCL8, CCL20) and anti-inflammatory genes (IL-10, IRAK-M). These findings indicate that the concept of ET may be usefully applied as mastitis prophylaxis facilitating a rapid response to microbial infection and avoiding dysregulated inflammation.  相似文献   

4.
Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.  相似文献   

5.
In adult zebrafish, 4 weeks of exercise training is known to induce an increase in mitochondrial enzymes such as citrate synthase (CS) when determined in mixed (red and white) muscle. However, this remodeling is not accompanied by changes in PGC-1α mRNA, a potent inducer of mitochondrial biogenesis in mammals. To further understand this response, we examined absolute and relative changes in red muscle area by histochemistry after 4 weeks of swim training. We also examined fiber-type specific responses in the expression of metabolic genes and putative regulators in red and white muscle of adult zebrafish at 1 and 8 weeks of training and in recovery from a single bout of exercise. Total red muscle area was unaltered after 4 weeks of training. The mRNA expression of CS was unaffected in red muscle, while it was increased in white muscle after 1 week of training and remained elevated at 8 weeks of training, suggesting an increase in oxidative capacity of this fiber type. In contrast, PGC-1α mRNA was elevated in both muscles only after 1 week of training. In both muscles, an acute bout of exercise rapidly (within 0–2 h post-exercise) induced PGC-1α mRNA and a delayed (24 h) increase in CS mRNA post-exercise. These results suggest complex temporal and spatial adaptive molecular responses to exercise in the skeletal muscles of zebrafish.  相似文献   

6.
7.
8.
肌细胞分化基因与大鼠肝再生的相关性分析   总被引:1,自引:0,他引:1  
肌细胞是组织器官的重要组成部分。为在基因转录水平了解肌细胞分化相关基因在大鼠肝再生中的作用,本文用搜集网站资料和查阅相关论文等方法获得上述基因.用Rat Genome2302.0芯片检测它们在大鼠肝再生(liver regeneration,LR)中表达情况,用比较真、假手术基因表达的差异性方法确定肝再生相关基因。初步证实上述基因中52个基因与肝再生相关。根据肝再生中基因表达的时间相关性将上述基因聚合为0.5-1h;2—12h;16、30、42、96h;18—24、36、48—60h;66—72、120-168h等5类,表达上调和下调的基因数分别为8和10,24和8,21和24,53和64,28和36。它们表达的相似性分为均上调、上调占优势、均下调、下调占优势、上调和下调次数相近等5类,涉及15、10、17、7和3个基因,共上调表达143次、下调136次,分为8类表达方式。表明肌细胞分化相关基因表达变化多样和复杂。根据上述结果推测,肝再生中成肌细胞和平滑肌细胞分化增强:骨骼肌和心肌细胞分化相关基因参与肝再生的生理生化活动。  相似文献   

9.
Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12?h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24?h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.  相似文献   

10.
11.
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.  相似文献   

12.
13.
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyl-transferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARbeta/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.  相似文献   

14.
15.
Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body’s immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS.  相似文献   

16.
17.
18.
19.
20.
MafBx and Murf are two new rat E3 ubiquitin ligases induced in muscle atrophy. Our goal was to investigate whether lipopolysaccharide (LPS) injection, a model of muscle catabolism, is associated with increased expression of MafBx and Murf. LPS (750 microg/100 g body weight) induces MafBx and Murf mRNA (respectively, 23-fold and 33-fold after 12 h; P<0.001). A transient induction of tumor necrosis factor-alpha mRNA (21-fold; P<0.001 at 3 h) and a decrease of insulin like growth factor-I mRNA (50%; P<0.001 at 6 h), two potential regulators of the ubiquitin-proteasome system were also demonstrated. In summary, MafBx and Murf mRNA are up-regulated in response to LPS and might play a role in the muscle proteolysis observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号