首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Early-life endocrine intervention may programme hippocampal glucocorticoid receptor (GR) expression and cause psychiatric disorders in later life. Glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of neuroendocrine and behavioural responses, but it is yet to be determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR expression and thus programme adolescent behaviour in rats. Two-dayold pups were injected intramuscularly with vacant plasmid (VP) or plasmid DNA encoding secretory GLP-1 (GP). Anxiety-related behaviour was assessed in the elevated plus maze (EPM) test at 8 weeks of age. Plasma corticosterone levels were measured with enzyme immunoassay (EIA). Protein and mRNA levels were determined by western blot and real-time polymerase chain reaction (PCR), respectively. The DNA methylation status of the GR exon 17 promoter was determined by bisulphate sequencing PCR (BSP). GP rats exhibited anxiolytic behaviour compared with their VP counterparts. Hippocampal GLP-1 receptor (GLP-1R) and GR mRNA expression were significantly elevated in GP rats without a significant difference in plasma corticosterone. Significant reduction in DNA methyltransferase 1 (DNMT1) expression was observed in GP rats disconnected with alterations in DNA methylation of the GR exon 17 promoter. Nevertheless, mRNA expression of nerve growth factor-inducible protein A (NGFI-A) was significantly elevated in GP rats. These results suggest that neonatal intramuscular injection of plasmid DNA encoding GLP-1 affects anxiety behaviour in adolescent rats, probably through NGFI-A-activated upregulation of hippocampal GR expression.  相似文献   

4.
The raphe-hippocampal serotonin (5-HT) system is involved in the regulation of the hypothalamus-pituitary-adrenal axis. The purpose of this study was to determine and compare the roles of 5-HT in the regulation of glucocorticoid receptor (GR) binding in the raphe nuclei and in the hippocampus. The effects of 5-HT, 5-HT agonists, and the 5-HT reuptake inhibitor citalopram on GR binding sites were studied in primary cultures of the fetal raphe nuclei and the hippocampus. Exposure of hippocampal cells to 5-HT, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI; a 5-HT2 agonist), or citalopram resulted in an increase in number of GR binding sites. The effect of DOI was blocked by ketanserin (a 5-HT2 antagonist). Specific and saturable GR binding was found in raphe cells. Exposure of raphe cells to 5-HT, (+/-)-8 hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT1A agonist), or citalopram induced a significant decrease in number of GR binding sites. The effect of 8-OH-DPAT was reversed by WAY 100135 [N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropiona mide; a 5-HT1A antagonist]. These results show that the regulation of GRs during fetal life is structure-dependent and involves different 5-HT receptor subtypes. Moreover, the regulation of hippocampal GRs by citalopram suggests an action of antidepressants independent of their effects on monoamines.  相似文献   

5.
6.
The activity of the adenylate cyclase located in membranes prepared from hippocampus of adult rat can be stimulated by serotonin (5-HT) (Ka = 4 X 10(-7) M). The maximal effect is obtained with 10 microM 5-HT. Freezing of the tissue decreases the 5-HT stimulation; this stimulation is optimal in the presence of 82.5 mM Tris-maleate buffer (pH 7.4) and 50 microM GTP. The adenylate cyclase activity of membranes prepared from cortex, hypothalamus, and colliculi of adult rats is not significantly stimulated by 5-HT. Dopamine (DA) also stimulates adenylate cyclase located in hippocampal membranes; its effect can be blocked by haloperidol (10(-6) M), which fails to inhibit 5-HT stimulation. Moreover, p-chlorophenylalanine treatment for 2 weeks or selective lesion of 5-HT axons afferent to the hippocampus increases the Vmax of 5-HT stimulation, but fails to change that of DA stimulation. The 5-HT stimulation can be inhibited by metergoline, spiroperidol, and pizotyline (10(-6) M), but not by the same concentrations of mianserin, ketanserine, alprenolol, phenoxybenzamine, and mepyramine. The 5-HT stimulation of adenylate cyclase of hippocampal membranes can be mimicked by tryptamine, 5-methoxytryptamine, bufotenine, and to a lesser extent by LSD; N-methyltryptamine, N-methyltryptophan, and 5-hydroxytryptophan are inactive. Studies with kainic acid suggest that the 5-HT recognition site (5-HT1) linked to adenylate cyclase is located on the membrane of intrinsic hippocampal neurons.  相似文献   

7.
8.
9.
10.
11.
The hippocampus receives major noradrenergic and serotoninergic (5-HT) innervations which interact with corticosteroid-sensitive cells. However, the subregional localization of these actions and the corticosteroid receptor types involved have not been defined and current ligand binding techniques for estimating corticosteroid receptors are hampered by several methodological limitations. We have developed in situ hybridization histochemical techniques to allow specific and sensitive estimation of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNA expression in rat hippocampus. Investigation of the effects of 5,7-dihydroxytryptamine lesions of 5-HT neurons showed significantly reduced GR and MR mRNA expression in some hippocampal subregions. Both abnormal 5-HT neurotransmission and excessive corticosteroid secretion are associated with major affective disorders, particularly depression. The crucial interaction between these two systems may occur, at least in part, at the level of regulation of hippocampal corticosteroid receptor expression.  相似文献   

12.
Here we have used the brain microdialysis method to test the effect of the 5-HT precursor L-tryptophan on 5-HT release. The release of endogenous 5-HT was measured in ventral hippocampus of the anesthetized rat both under basal conditions and when serotoninergic neuronal activity was raised by electrical stimulation of the dorsal raphe nucleus (DRN). Low frequency electrical stimulation of the DRN evoked a frequency-dependent (2-10 Hz) release of hippocampal 5-HT. The electrically evoked release of 5-HT was markedly enhanced by pretreatment with L-tryptophan (50 and 100 mg/kg i.p.). The effect of L-tryptophan on evoked release of 5-HT was dose-related, detectable at low (2 Hz) stimulation frequencies, and became stronger as the stimulation frequency increased. L-Tryptophan (10, 50 and 100 mg/kg i.p.) had no effect on basal output of 5-HT. We conclude from these findings that elevation of 5-HT precursor availability increases 5-HT release in hippocampus in vivo under conditions of increased serotoninergic neuronal activity.  相似文献   

13.
14.
The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, approximately 20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 micro m paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice.  相似文献   

15.
16.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

17.
18.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

19.
20.
大鼠海马神经元内11β-HSD1和GR的共存及其意义   总被引:4,自引:0,他引:4  
Wan SL  Liao MY  Hao RS  Li ZF  Sun G 《生理学报》2002,54(6):473-478
本研究旨在探讨糖皮质激素代谢酶-11β-羟基类固醇脱氢酶Ⅰ型(11β-HSD1)和糖皮质激素受体(GR)在大鼠海马神经元内的共同分布及其意义。用免疫细胞化学方法研究显示,海马神经元内不仅存在11β-HSD1免疫反应物质,还存在GR免疫反应物质,而且11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLC)方法研究表明,地塞米松(DEX)可以促进11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLG)方法研究表明,地塞米松(DEX)可以促进11β-HSD1蛋白表达及其酶的活性,利用11β-HSD1基因启动子区序列构建的以CAT酶为报告基因的pBLCAT6质粒转染PC12细胞,证实DEX能够促进CAT酶的表达。以上糖皮质激素的作用均可为GR受体阻断剂RU38486所阻断,结果提示;糖皮质激素(GC)与GR结合后,可以作用于与其共存的11β-HSD1基因启动子区,使11β-HSD1表达增加,从而使更多的GC代谢产物转化为有活性的GC,此机制可能与保证GC在海马神经元内与亲和力较低的GR结合有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号