首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to ascertain the existence of polyol dehydrogenase which seemed to take a part in polyalcohol production by Pichia miso, the preparation and the partial purification of polyol dehydrogenase from the cells of Pichia miso were carried out. Some properties of this enzyme preparation and the identification of the products formed by this enzyme action were also described. This enzyme preparation was found to catalyze the following reactions:

D-arabitol+DPN+?D-Xylulose+DPNH+H+,Polyalcohol+DPN+?Ketose+DPNH+H+.  相似文献   

2.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

3.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

4.
Tetraphenylphosphonium (TPP+) and tetramethylrhodamine ethyl ester (TMRE+) cations used as transmembrane carriers of ubiquinone (MitoQ) and plastoquinone (SkQ, SkQR) in mitochondria prevented at nanomolar concentrations the chitosanor H2O2-induced destruction of the nucleus in epidermal cells of epidermis isolated from pea leaves. The protective effect of the cations was potentiated by palmitate. Penetrating anions of tetraphenylboron (TB) and phenyl dicarbaundecaborane also displayed protective effects at micromolar concentrations; the effect of TB was potentiated by NH4Cl. It is proposed that the protective effect of the penetrating cations and anions against chitosan is due to suppression of the generation of reactive oxygen species in mitochondria as a result of the protonophoric effect of the cations plus fatty acids and the anions plus NH4+. Phenol was suitable as the electron donor for H2O2 reduction catalyzed by horseradish peroxidase, preventing the destruction of cell nuclei. The penetrating cations and anions, SkQ1, and SkQR1 did not maintain the peroxidase or peroxidase/oxidase reactions measured by their suitability as electron donors for H2O2 reduction or by the oxidation of exogenous NADH.  相似文献   

5.
Ferric leghemoglobin reductase (FLbR) from soybean (Glycine max [L.] Merr) nodules catalyzed oxidation of NADH, reduction of ferric leghemoglobin (Lb+3), and reduction of dichloroindophenol (diaphorase activity). None of these reactions was detectable when O2 was removed from the reaction system, but all were restored upon readdition of O2. In the absence of exogenous electron carriers and in the presence of O2 and excess NADH, FLbR catalyzed NADH oxidation with the generation of H2O2 functioning as an NADH oxidase. The possible involvement of peroxide-like intermediates in the FLbR-catalyzed reactions was analyzed by measuring the effects of peroxidase and catalase on FLbR activities; both enzymes at low concentrations (about 2 μg/mL) stimulated the FLbR-catalyzed NADH oxidation and Lb+3 reduction. The formation of H2O2 during the FLbR-catalyzed NADH oxidation was confirmed using a sensitive assay based on the fluorescence emitted by dichlorofluorescin upon reaction with H2O2. The stoichiometry ratios between the FLbR-catalyzed NADH oxidation and Lb+3 reduction were not constant but changed with time and with concentrations of NADH and O2 in the reaction solution, indicating that the reactions were not directly coupled and electrons from NADH oxidation were transferred to Lb+3 by reaction intermediates. A study of the affinity of FLbR for O2 showed that the enzyme required at least micromolar levels of dissolved O2 for optimal activities. A mechanism for the FLbR-catalyzed reactions is proposed by analogy with related oxidoreductase systems.  相似文献   

6.
Changes in the bulk-phase concentration of O2 and H+ associated with the reduction of O2 to water are simultaneously determined in reactions catalyzed by fully reduced cytochrome c oxidase both isolated and embedded in liposomes. Consistent with the polyphasic kinetics of electron transfer through the oxidase, the time course of O2 consumption and H+ translocation exhibit the following novel characteristics: (1) The uptake of scalar protons (Hm +), the ejection of vectorial protons (H+ v), and the consumption of O2, all proceed in a kinetically polyphasic process. (2) During the first phase of the reaction the rates of O2 uptake and H+ transfer are extremely fast and compatible with the rates of electron flow through the oxidase. (3) The Km of the oxidase for O2 is close to 75 M, the same for O2 consumption and scalar H+ uptake. The Vmax of O2 reduction to water in reactions catalyzed by the isolated enzyme is, at least, 0.5 × 104 s–1. (4) The extent of vectorial H+ ejection by cytochrome c oxidase embedded in liposomes is an exponential function dependent on both enzyme concentration and extent of O2 consumption. (5) The H+/O stoichiometry of H+ ejection is a variable that may reach a maximum value of 4.0 only when the enzyme undergoes net oxidation at extremely high enzyme/O2 molar ratios. It is postulated that the generation of useful energy at the level of cytochrome c oxidase depends not only on the number of molecules of O2 reduced to water but also on the extent and state of reduction and/or protonation of the enzyme.  相似文献   

7.
Lu Han  Ying Li  Aiping Fan 《Luminescence》2018,33(4):751-758
Peroxidase is a commonly used catalyst in luminol–H2O2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol–H2O2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol–H2O2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1O2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis.  相似文献   

8.
Activation and Deactivation of H-ATPase in Intact Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The light activation mechanism of the latent H+-ATPase was investigated in intact spinach (Spinacia oleracea, Hybrid 424) chloroplasts. The following observations were made. (a) Photosystem I electron acceptors such as methyl viologen, nitrite, oxaloacetate, etc., inhibit the light activation of the enzyme. (b) The electron transfer inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) fully inhibits the process. (c) Ascorbate plus diaminodurene or dithionite can restore light activation in DCMU-poisoned chloroplasts. (d) The activated state of the enzyme decays rather slowly (within a few minutes) after illumination of the intact chloroplasts. (e) The rate of dark decay is accelerated by oxidants (H2O2 or ferricyanide) and slowed down by dithiothreitol.

It is suggested that the physiological mechanism for regulation of the H+-ATPase involves oxidation and reduction reactions in a manner which resembles the regulation of the light-activated carbon cycle enzymes.

  相似文献   

9.
Mouse and human spermatozoa, but not rabbit spermatozoa, have long been known to be sensitive to loss of motility induced by exogenous H2O2. Recent work has shown that loss of sperm motility in these species correlates with the extent of spontaneous lipid peroxidation. In this study, the effect of H2O2 on this reaction in sperm of the three species was investi gated. The rate of spontaneous lipid peroxidation in mouse and human sperm is markedly enhanced in the presence of 1-5 mM H2O2, while the rate in rabbit sperm is unaffected by H2O2. The enhancement of lipid peroxidation, the rate of reaction of H2O2 with the cells, the activity of sperm glutathione peroxidase, and the endogenous glutathione content are highest in mouse sperm, intermediate in human sperm, and very low in rabbit sperm. Inac tivation of glutathione peroxidase occurs in the presence of H2O2 due to complete conver sion of endogenous glutathione to GSSG: No GSH is available as electron donor substrate to the peroxidase. Inactivation of glutathione peroxidase by the inhibitor mercaptosucci nate has the same effect on rate of lipid peroxidation and loss of motility in mouse and human sperm as does H2O2. This implies that H2O2 by itself at 1-5 mM is not intrinsically toxic to the cells. With merceptosuccinate, the endogenous glutathione is present as GSH in mouse and human sperm, indicating that the redox state of intracellular glutathione by itself plays little role in protecting the cell against spontaneous lipid peroxidation. Mouse and human sperm also have high rates of superoxide production. We conclude that the key intermediate in spontaneous lipid peroxidation is lipid hydroperoxide generated by a chain reaction initiated by and utilizing superoxide. Removal of this hydroperoxide by gluta thione peroxidase protects these sperm against peroxidation; inactivation of the peroxidase allows lipid hydroperoxide to increase and so increases the peroxidation rate. Rabbit sperm have low rates of superoxide reaction due to high activity of their superoxide dismutase; lack of endogenous glutathione and low peroxidase activity does not affect their rate or lipid peroxidation. As a result, these sperm are not affected by either H2O2 or mercapto-succinate. These results lead us to postulate a mechanism for spontaneous lipid peroxida tion in mammalian sperm which involves reaction of lipid hydroperoxide and O2 as the rate-determining step.  相似文献   

10.
Summary.  Methyl-jasmonate (MeJA) has been proposed to be involved in the evocation of defense reactions, as the oxidative burst in plants, substituting the elicitors or enhancing their effect. 48 h dark- and sterilely cultured (axenic) aeroponic sunflower seedling roots excised and treated with different concentrations of MeJA showed a strong and quick depression of the H+ efflux rate, 1.80 μM MeJA totally stopping it for approximately 90 min and then reinitiating it again at a lower rate than controls. These results were wholly similar to those obtained with nonsterilely cultured roots and have been interpreted as mainly based on H+ consumption for O2 •− dismutation to H2O2. Also K+ influx was strongly depressed by MeJA, even transitorily reverting to K+ efflux. These results were consistent with those associated to the oxidative burst in plants. MeJA induced massive H2O2 accumulation in the middle lamella and intercellular spaces of both the root cap cells and the inside tissues of the roots. The native acidic extracellular peroxidase activity of the intact (nonexcised) seedling roots showed a sudden enhancement (by about 52%) after 5 min of MeJA addition, maintained for approximately 15 min and then decaying again to control rates. O2 uptake by roots gave similar results. These and other results for additions of H2O2 or horseradish peroxidase, diphenylene iodonium, and sodium diethyldithiocarbamate trihydrate to the reaction mixture with roots were all consistent with the hypothesis that MeJA induced an oxidative burst, with the generation of H2O2 being necessary for peroxidase activity. Results with peroxidase activity of the apoplastic fluid were in accordance with those of the whole root. Finally, MeJA enhanced NADH oxidation and inhibited hexacyanoferrate(III) reduction by axenic roots, and diphenylene iodonium cancelled out these effects. Redox activities by CN- preincubated roots were also studied. All these results are consistent with the hypothesis that MeJA enhanced the NAD(P)H oxidase of a redox chain linked to the oxidative burst, so enhancing the generation of O2 •− and H2O2, O2 uptake, and peroxidase activity by roots. Received July 12, 2002; accepted October 2, 2002; published online May 21, 2003 RID="*"  相似文献   

11.
For Azospirillum brasilense Sp7, the energy transformation efficiencies were measured in anaerobic respirations with either nitrate, nitrite or nitrous oxide as respiratory electron acceptors by determining the maximal molar growth yields and the H+-translocations using the oxidant pulse method. In continuous cultures grown with malate limiting, the maximal molar growth yields (Y s max -values) were essentially the same with O2 or N2O but were 1/3 and 2/3 lower with NO 2 - or NO 3 - , respectively, as respiratory electron acceptors. Both the maximal molar growth yields and the maintenance energy coefficients were surprisingly high when Azospirillum was grown with nitrite as the sole electron acceptor and source for N-assimilation. Growth under N2-fixing conditions drastically reduced the Y s max -values in the N2O and O2-respiring cells. In the H+-translocation measurements, the /oxidant ratios were 5.6 for O2→H2O, 2.5–2.8 for NO 3 - →NO 2 - , 2.2 for NO 2 - →N2O and 3.1 for N2O→N2 respirations when the cells were preincubated with valinomycin and K+. All the values were enhanced when the experiments were performed with valinomycin plus methyltriphenylphosphonium (=TPMP+) cation. The uncoupler carbonyl cyanide-m-chlorophenyl-hydrazone diminished the H+-excretion indicating that this translocation was due to vectorial flow across the membrane. In the absence of any ionophore, nitrate and nitrite respirations were accompanied by a H+-uptake . Any significant H+-translocation could not be detected in N2O- and O2-respirations under these conditions. It is concluded that nitrate reduction proceeds inside the cytoplasmic membrane, whereas nitrite is reduced extramembraneously. The data are not conclusive for the location of nitrous oxide reductase. The maximal molar growth yield determinations and the absence of any H+-uptake in untreated cells indicate a cytoplasmic orientation of the enzyme similar to the terminal cytochrome oxidase of respiration. The low H+-extrusion values for N2O-respiration compared to O2-respiration in cells treated with valinomycin plus TPMP+ are, however, not in accord with such an interpretation.  相似文献   

12.
Hydrogen peroxide production by roots and its stimulation by exogenous NADH   总被引:4,自引:0,他引:4  
H2O2 production by roots of young seedlings was monitored using a non-destructive in vivo assay at pH 5.0. A particularly high rate of H2O2 production was measured in the roots of soybean (Glycine max L. cv. Labrador) seedlings which were used for further investigation of the physiological and enzymological properties of apoplastic H2O2 production. In the soybean root H2O2 production can be stimulated 10-fold by exogenous NADH or NADPH. This response displays typical features of a peroxidase-catalyzed oxidase reaction using NAD(P)H as electron donor for the reduction of O2 to H2O2. Comparative measurements showed that the NADH-induced H2O2 production of the roots resembles the H2O2-forming activity of horseradish peroxidase with respect to NADH and O2 concentration requirements and sensitivity to inhibition by KCN, NaN3, superoxide dismutase and catalase. NADH-induced H2O2 production can be observed with similar intensity in all regions of the root, in agreement with the distribution of apoplastic peroxidase activity. In contrast, the activity responsible for the basal H2O2 production in the absence of exogenous NADH was mainly confined to a short subapical zone of the root and differs from the NADH-induced reaction by insensitivity to inhibition by superoxide dismutase and a strikingly lower requirement for O2. It is concluded that the basal H2O2 production of the root is mediated by an enzyme different from peroxidase, possibly a plasma membrane O2?-producing oxidase.  相似文献   

13.
DPNH peroxidase is a flavin adenine dinucleotide-containing flavoprotein. Anaerobic titration of enzyme with dithionite has shown that the active site of the enzyme contains 2 mol of flavin and in addition 1 mol of a non-flavin electron acceptor that is tentatively identified as a disulfide group. Thus complete reduction of the enzyme requires 3 mol of dithionite per mole of active site. The first mole of dithionite reduces the non-flavin acceptor; complex formation between the reduced acceptor and one of the bound flavin molecules causes the formation of a long wavelength absorption band between 500 and 670 nm. The second mole of dithionite reduces the flavin that interacts with the reduced non-flavin group, and the long wavelength band disappears. The third mole of dithionite reduces the second mole of flavin. All groups are reoxidized in the presence of air. DPNH reacts with only two of the enzyme-bound electron acceptors. The first mole of DPNH reduces the non-flavin group to form an intermediate (I) that is almost identical with that formed by dithionite. The second mole of DPNH complexes with the second flavin of Intermediate I to form Intermediate II. This reaction causes a further absorbance increase in the long wavelength region; the tail of the absorption band now extends to 960 nm. The titration data (potassium phosphate, 0.05 M, pH 7.0) can be fitted with dissociation constants of 1 times 10-7 M for the formation of I, and 3 times 10-6 M for the conversion of I to II. In air, species II is oxidized to I; I is stable in air, but is oxidized stoichiometrically to oxidized enzyme by H2O2. Present evidence suggests that bound DPN-plus is responsible for the air stability of species I. Intermediate I, but not oxidized enzyme, reacts slowly with phenylmercuric acetate. This reaction causes loss of the air-stable intermediate and parallel loss in enzyme activity. The inactive enzyme cannot be reduced by DPNH to Species I; DPNH can, however, still react with the second flavin to form the autoxidizable complex. With other methods of enzyme inactivation there is also a direct correlation between residual enzyme activity and the ability of enzyme to form the air-stable intermediate. It is concluded that the air-stable intermediate is an important catalytic species.  相似文献   

14.
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.  相似文献   

15.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

16.
17.
The rate of oxygen uptake and of 14C-1-glucose oxidation by peritoneal and alveolar macrophages has been simultaneously recorded before and after the exposure of the cells to B. mycoides. A stimulation of both processes was detected within seconds after the addition of bacteria. A comparison of 14C-1-glucose with 14C-6-glucose oxidation has indicated that the stimulation of the 14CO2 production from 14C-1-glucose is substantially to be ascribed to an increased activity of the HMP pathway. On approaching anaerobiosis, the rate of the HMP pathway fell to zero, showing a direct link between cell respiration and production of NADP+ for the pathway. The assay of an enzyme, catalysing the reaction: NADPH + H+ + O2 → NADP+ + H2O2, in 20 000 g pellets has shown that this oxidase has a higher activity in subcellular fractions derived from macrophages previously exposed to bacteria. The activation of this enzyme may be the most important event in the metabolic stimulation of macrophages challenged with bacteria. On the basis of experiments carried out with KCN, an inhibitor of both NADPH oxidase and catalase, it has been concluded that, under particular conditions, also the concerted action of GSH peroxidase and GSSG reductase might contribute to supporting the HMP pathway activity.  相似文献   

18.
To elucidate mechanism of ganglioside neuroprotection, it is important to study their metabolic effects, specifically of action on Na+,K+-ATPase. It has been shown that under effect of oxidative stress inductors and neurotoxins an oxidative inactivation of this enzyme takes place in PC12 cells and brain cortex synaptosomes, this inactivation being able to be prevented or decreased by ganglioside GM1. Thus, for instance, 24 h after action of 1 mM H2O2, activity of Na+,K+-ATPase in PC12 cells decreased more than twice. However, in the case of preincubation of the cells with ganglioside GM1 prior to the H2O2 action, this enzyme activity did not differ statistically significantly from control. Ganglioside GM1 also was able to increase statistically significantly the enzyme activity decreased by action on the PC12 cells of amyloid β-peptide (Aβ) causing lesion of neurons in Alzheimer’s disease and of low H2O2 concentrations. Experiments on brain cortex synaptosomes have established that not only antioxidants—α-tocopherol and superoxide dismutase (SOD)—but also ganglioside GM1 prevent the glutamate-produced Na+,K+-ATPase oxidative inactivation. The obtained data agree with a suggestion that the ganglioside neuroprotective effect at action on nerve cells of such toxins as Aβ, glutamate or reactive oxygen species is due to their ability to inhibit the free-radical reactions.  相似文献   

19.
Ascorbate peroxidase (APOX) activity, which catalyzes the oxidation of ascorbic acid with the concurrent reduction of hydrogen peroxide (H2O2), was found in larvae of Helicoverpa zea. Since insects apparently lack a Se-dependent glutathione peroxidase and since catalase has a low affinity for H2O2, this enzyme may be important in removing H2O2 in insects. We partially purified the APOX activity 58x from the whole body homogenates and investigated its activity with model lipid peroxides, electron donors, and known inhibitors of plant APOX. The H. zea APOX has activity with model lipid peroxides. This, along with the APOX activity found in fat body tissues, suggests that ascorbate peroxidase may be important in removing lipid peroxides in insects. The H. zea APOX has broader specificity for electron donors than the plant APOX with activity using cysteine, NADPH, glutathione, and cytochrome C as electron donors (22–93% of activity with ascorbate). The H. zea APOX is also resistant to many of the known inhibitors of plant APOX, suggesting that the enzyme has a different active site and may not be a heme-peroxidase. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The xanthine-oxidizing enzyme of rat liver has been purified as an NAD+-dependent dehydrogenase (type D) and as the O2-dependent oxidase (type O). The purified D and O variants are nearly homogenous as judged by polyacrylamide discontinuous gel electrophoresis and are indistinguishable on sodium dodecyl sulfate-urea gels. The absorption spectrum of the type D enzyme is indistinguishable from that of the type O enzyme and closely resembles the spectra of xanthine-oxidizing enzymes from other sources. The types D and O enzymes have essentially the same cofactor composition. Oxidation of xanthine by type D is stimulated by NAD+ with concomitant NADH formation. Type D is able to utilize NADH as well as xanthine as electron donor to various acceptors, in contrast to type O that is unable to oxidize NADH. Arsenite, cyanide and methanol completely abolish xanthine oxidation by the type D enzyme while affecting the activities with NADH to varying extents. In these respects rat liver xanthine dehydrogenase closely resembles chicken liver xanthine dehydrogenase. However, in contrast to the avian enzyme, the purified rat liver enzyme is unstable as a dehydrogenase and is gradually converted to an oxidase. This conversion is accompanied by an increase in the aerobic xanthine → cytochrome c activity. The native type D enzyme in rat liver extracts is precipitable with antibody prepared against purified type O. The Km for xanthine is not significantly different for the two forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号