首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between Leishmania parasites and dendritic cells (DCs) are complex and involve paradoxical functions that can stimulate or halt T cell responses, leading to the control of infection or progression of disease. The magnitude and profile of DC activation vary greatly, depending upon the Leishmania species/strains, developmental stages, DC subsets, serum opsonization, and exogenous DC stimuli involved in the study. In general, the uptake of Leishmania parasites alone can trigger relatively weak and transient DC activation; however, the intracellular parasites (amastigotes) are capable of down-modulating LPS/IFN-gamma-stimulated DC activation via multiple mechanisms. This review will highlight current data regarding the initial interaction of DC subsets with invading parasites, the alterations of DC signaling pathways and function by amastigotes, and the impact of DC functions on protective immunity and disease pathogenesis. Available information provides insight into the mechanisms by which DCs discriminate between the types of pathogens and regulate appropriate immune responses.  相似文献   

2.
The progressive disease following Leishmania amazonensis infection in mice requires functional CD4(+) T cells, which are primed to a disease-promoting phenotype during the infection. To understand how these pathogenic T cells are generated and the role of dendritic cells (DCs) in this process, we use DCs of susceptible BALB/c and resistant C3H/HeJ mice to examine parasite-DC interactions in vitro as well as the effector phenotype of T cells primed by parasite-exposed DCs in vivo. Our results demonstrate that amastigotes and metacyclics efficiently enter and activate DCs of both genetic backgrounds. Infection with amastigotes fails to induce CD40-dependent IL-12 production, but rather potentiates IL-4 production in BALB/c DCs. Upon transfer into syngeneic recipients, amastigote-exposed BALB/c DCs prime parasite-specific Th cells to produce significantly higher levels of IL-4 and IL-10 than their C3H/HeJ counterparts. Transfer studies with IL-4(-/-) DCs indicate that this enhanced Th2 priming seen in BALB/c mice is partially due to the IL-4 production by amastigote-carrying DCs. These results suggest that L. amazonensis amastigotes may condition DCs of a susceptible host to a state that favors activation of pathogenic CD4(+) T cells, and thereby provide a new perspective on the pathogenesis of cutaneous leishmaniasis and protozoan parasite-host interactions in general.  相似文献   

3.
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol.  相似文献   

4.
[Leishmania(L.)] amazonensis amastigotes reside in macrophages within spacious parasitophorous vacuoles (PVs) which may contain numerous parasites. After sporadic fusion events were detected by time-lapse cinemicrography, PV fusion was examined in two different models. In single infections, it was inferred from the reduction in PV numbers per cell. In a reinfection model, macrophages infected with unlabeled amastigotes were reinfected with GFP-transfected- or carboxyfluorescein diacetate succinimidyl ester-labeled parasites, and fusion was detected by the colocalization of labeled and unlabeled amastigotes in the same PVs. The main findings were: (1) as expected, fusion frequency increased with the multiplicity of infection; (2) most fusion events took place in the first 24h of infection or reinfection, prior to the multiplication of incoming parasites; (3) resident and incoming parasites multiplied at similar rates in fused PVs. The model should be useful in studies of parasite and host cell factors and mechanisms involved in PV fusogenicity.  相似文献   

5.
Leishmania species are dimorphic protozoan parasites that live and replicate in the gut of sand flies as promastigotes or in mammalian hosts as amastigotes. Different immune cells, including DCs, and receptors differ in their involvement in phagocytosis of promastigotes and amastigotes and in recognition of different Leishmania species. In the case of L. mexicana, differences in phagocytosis of promastigotes and amastigotes by DCs and participation of C‐type lectin receptors (CLRs) have not been established. In the present study, flow cytometry and confocal microscopy were used to investigate the phagocytosis by monocyte‐derived dendritic cells (moDCs) of L. mexicana promastigotes and amastigotes in the presence or absence of immune serum during various periods of time. Blocking antibodies against mannose receptors and DC‐SIGN were used to explore the participation of these receptors in the phagocytosis of L. mexicana by moDC. The major differences in interactions of L. mexicana promastigotes and amastigotes with moDC were found to occur within the first 3 hr, during which phagocytosis of promastigotes predominated as compared with opsonization of promastigotes and amastigotes. However, after 6 hr of incubation, opsonized promastigotes were preferentially phagocytosed as compared with unopsonized promastigotes and amastigotes and after 24 hr of incubation there were no differences in the phagocytosis of promastigotes and amastigotes. Finally, after 3 hr incubation, DC‐SIGN was involved in the phagocytosis of promastigotes, but not of amastigotes.  相似文献   

6.
Various Leishmania species were engineered with green fluorescent protein (GFP) using episomal vectors that encoded an antibiotic resistance gene, such as aminoglycoside geneticin sulphate (G418). Most reports of GFP-Leishmania have used the flagellated extracellular promastigote, the stage of parasite detected in the midgut of the sandfly vector; fewer studies have been performed with amastigotes, the stage of parasite detected in mammals. In this study, comparisons were made regarding the efficiency for in vitro G418 selection of GFP-Leishmania amazonensis promastigotes and amastigotes and the use of in vivo G418 selection. The GFP-promastigotes retained episomal plasmid for a prolonged period and G418 treatment was necessary and efficient for in vitro selection. In contrast, GFP-amastigotes showed low retention of the episomal plasmid in the absence of G418 selection and low sensitivity to antibiotics in vitro. The use of protocols for G418 selection using infected BALB/c mice also indicated low sensitivity to antibiotics against amastigotes in cutaneous lesions.  相似文献   

7.
《Cytotherapy》2014,16(6):826-834
Background aimsEx vivo–generated monocyte-derived dendritic cells (DCs) matured with monophosphoryl lipid A (MPLA) and interferon-γ (IFN-γ) can be used as cancer immunotherapy. MPLA/IFN-γ DCs induce Th1 T cell responses and have migratory capacity. Different culture regimens have been used for generation of immunotherapeutic DCs, with varying results. In the present study, culture conditions for MPLA/IFN-γ–matured type I DCs were optimized for clinical application.MethodsDCs were generated from monocytes in the clinical grade culture media CellGro DC, AIM V or X-VIVO 15 in the absence or presence of 2% human serum (HS) and matured with the use of MPLA/IFN-γ. DC yield and DC functionality were assessed. DC functionality was determined by means of analysis of cytokines in culture supernatant, migratory capacity, expression of co-stimulatory molecules, T cell stimulatory capacity of DCs and T helper cell (Th) polarization by the DCs.ResultsDCs generated in the presence of 2% HS produced low amounts of pro-inflammatory cytokines and could not migrate irrespective of the medium used. In the absence of HS, MPLA/IFN-γ DCs generated in X-VIVO did not migrate either. MPLA/IFN-γ DCs generated in AIM V have slightly lower capacity to induce Th1 cells than do DCs generated in CellGro or X-VIVO.ConclusionsAddition of HS to different GMP culture media is detrimental for pro-inflammatory DC maturation and migration. In the absence of serum, CellGro is the most optimal medium tested for generation of migratory and Th1-inducing MPLA/IFN-γ DCs for cancer immunotherapy.  相似文献   

8.
Leishmania amazonensis is an intracellular protozoan parasite of macrophages. Cutaneous leishmaniasis in an immunocompetent host begins as papules or nodules followed by ulceration at the site of promastigote inoculation. In this study, the pathological changes of cutaneous leishmaniasis lesions in T cell deficient nude mice were examined. When infected with L. amazonensis promastigotes, nude mice developed non-ulcerative cutaneous nodules. By histological examination of cutaneous lesions, massive accumulation of vacuolated histiocytes containing amastigotes was observed in all the nude mice. Although infiltration of mononuclear and polymorphonuclear cells was seen in the lesions of immunocompetent mice, few such cells were observed in the lesions of nude mice. These results indicate the importance of T cells on the ulcer formation in cutaneous leishmaniasis.  相似文献   

9.
With the purpose of studying the antigenic role that factors excreted by Leishmania amastigotes might have during murine infection, immunoblots were carried out with sera from C57BL/6 and BALB/c mice infected with two strains of Leishmania (L.) amazonensis, NR and IFLA/BR. Both strains differ widely in virulence in BALB/c mice. BALB/c but not C57BL/6 sera recognized several excretion products. The excreted antigens showed a strong response towards IgG1 and IgG2a isotypes whilst they reacted only weakly against IgG2b and IgG3. A low-molecular weight antigen (about 20 kDa) excreted by both Leishmania strains was strongly recognized by IgG1 from BALB/c mice sera infected with IFLA/BR, the most virulent strain. Sera from NR infected mice were incapable of recognizing this antigen in spite of its presence in NR excreted products. The results indicate that the humoral immune response to excreted antigens of amastigotes depends on both the host genetic background and the parasite strain.  相似文献   

10.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

11.
Leishmania proteinase activity is known as parasite differentiation marker, and has been considered relevant for leishmanial survival and virulence. These properties suggest that Leishmania proteinases can be promising targets for development of anti-leishmania drugs. Here, we analyze the activities of four proteinases during the early phase of the Leishmania amazonensis promastigotes differentiation into amastigotes induced by heat shock. We have examined activities of cysteine-, metallo-, serine-, and aspartic-proteinase by hydrolysis of specific chromogenic substrates at pH 5.0 and at the optimal pH for each enzyme. Our results show that metallo-, serine-, and aspartic-proteinases activities were down-regulated during the shock-induced transformation of promastigotes into amastigotes. In contrast, cysteine-proteinase activity increased concomitantly with the promastigote differentiation. Immunocytochemical localization using two anti-cysteine-proteinase monospecific rabbit antibodies detected the enzyme in several cell compartments of both parasite stages. Our results show different proteinase activity modulation and expression during the early phases of the shock-induced parasite transformation.  相似文献   

12.
13.
In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during meta-cyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.  相似文献   

14.
An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.  相似文献   

15.
Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of leishmaniasis, characterized by an inefficient parasite-specific cellular response and heavily parasitized macrophages. In Brazil, Leishmania (Leishmania) amazonensis is the main species involved in DCL cases. In the experimental model, recognition of phosphatidylserine (PS) molecules exposed on the surface of amastigotes forms of L. amazonensis inhibits the inflammatory response of infected macrophages as a strategy to evade the host immune surveillance. In this study, we examined whether PS exposure on L. amazonensis isolates from DCL patients operated as a parasite pathogenic factor and as a putative suppression mechanism of immune response during the infection. Peritoneal macrophages from F1 mice (BALB/c×C57BL/6) were infected with different L. amazonensis isolates from patients with localized cutaneous leishmaniasis (LCL) or DCL. DCL isolates showed higher PS exposure than their counterparts from LCL patients. In addition, PS exposure was positively correlated with clinical parameters of the human infection (number of lesions and time of disease) and with characteristics of the experimental infection (macrophage infection and anti-inflammatory cytokine induction). Furthermore, parasites isolated from DCL patients displayed an increased area in parasitophorous vacuoles (PV) when compared to those isolated from LCL patients. Thus, this study shows for the first time that a parasite factor (exposed PS) might be associated with parasite survival/persistence in macrophages and lesion exacerbation during the course of DCL, providing new insights regarding pathogenic mechanism in this rare chronic disease.  相似文献   

16.
Leishmania amazonensis recombinants expressing the enhanced green fluorescent protein (egfp) gene or beta-galactosidase gene (lacZ) were constructed for drug screening and histopathological analysis. The egfp or lacZ in a leishmanial transfection vector, p6.5, was introduced into L. amazonensis promastigotes, and egfp or lacZ-carrying recombinant L. amazonensis, La/egfp and La/lacZ, respectively, were obtained. Expression of egfp or lacZ in both promastigotes and amastigotes could be clearly visualized by fluorescence microscopy or by light microscopy with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), respectively. Fluorescence signal and beta-galactosidase activity measured by a colorimetric reaction with chlorophenol red beta-D-galactopyranoside (CPRG) were well correlated to the numbers of these parasites. The inhibitory concentration (IC50) of a leishmanicidal drug, amphotericin B, in L. amazonensis promastigotes measured using La/egfp and La/lacZ was similar to that measured by conventional methods such as cell counting, thymidine incorporation and colorimetric assay. Furthermore, the fluorescence signal and absorbance of CPRG correlated well with the numbers of La/egfp and La/lacZ amastigotes in macrophages, respectively, suggesting La/egfp and La/lacZ can be a convenient and useful tool for drug screening not only in promastigotes, but also in amastigotes of L. amazonensis. La/lacZ collected from mouse tissues four weeks after the parasite infection were stained well with X-Gal. La/lacZ allowed parasite detection at high sensitivity in the tissues of infected mice and will be useful for following infections in macrophages in vivo. Thus, the marker-transfected Leishmania parasites constructed in this study will be useful for analyses of Leishmania parasites, especially at the intracellular stage.  相似文献   

17.
The human macrophage cell line U-937 infected with different Leishmania species, Leishmania mexicana amazonensis (Lma), Leishmania donovani (Ld) and Leishmania infantum (Li), was analyzed by flow cytometry (FCM). Leishmania spp. were labeled with different stains prior to the infection of the U-937 cells (BCECF-Am, PKH2-GL and SYTO 17) or after the infection (AO, FITC-conjugated monoclonal antibodies, PI). Infected cells were analyzed by flow cytometry, fluorescence microscopy and in parallel microscopically after Giemsa staining. The data obtained by these two methods were compared to decide which method is mostly appropriate for detection and estimation of the infection rate. Three fluorescent stains were suitable: BCECF-Am, SYTO 17 and FITC-conjugated MoAb with 0.02% digitonin. None of the vital stains gave evaluable results after 3 days of incubation.  相似文献   

18.
19.
20.
The incidence of HIV/Leishmania co-infection decreases after antiretroviral drug therapy; therefore, the in vitro and in vivo activity of three antiretroviral drugs against Leishmania (Viannia) braziliensis and L. (L.) amazonensis was evaluated. Different concentrations of indinavir (IDV), atazanavir (ATV), and ritonavir (RTV) were added to promastigote cultures, and the 50% inhibitory concentration (IC50) was determined. IDV and RTV were also evaluated against intracellular amastigotes, and the Infection Index determined. BALB/c mice, infected with L. (L.) amazonensis in the left footpad, were treated orally with IDV and RTV for 30days, and monitored by measuring the footpad thickness and parasite load of regional lymph nodes and spleen. For promastigotes, IDV exhibited an IC50 value of 100μM against L.(L.) amazonensis. The RTV IC50 for L. (L.) amazonensis and L. (V.) braziliensis were 40 and 2.3μM, respectively, and the ATV IC50 for L. (V.) braziliensis was 266μM. For intracellular amastigotes, IDV (25, 50, and 100μM) significantly decreased the Infection Index of L. (L.) amazonensis (56.8%, 47.9%, and 65.0%) and L. (V.) braziliensis (37.8%, 48.7%, and 43.2%). RTV (12.5, 25, and 50μM) decreased the infection index of L. (L.) amazonensis by 26.3%, 42.4%, and 44.0%, and that of L. (V.) braziliensis by 27.6%, 37.3%, and 39.2%. Antiretroviral-treated mice had a significant reduction in footpad thickness after the third week of IDV and after the fifth week of RTV treatment. However, there was no reduction in parasite load. These results suggest that IDV and RTV have anti-Leishmania activity, but only in higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号