首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in Plasmodium falciparum dihydropteroate synthase have been linked to resistance to the antimalarial drug, sulfadoxine, which competes with the dihydropteroate synthase substrate, p-aminobenzoate. In an effort to evaluate the role of these mutations in a simple model system, we have expressed six relevant alleles of the P. falciparum dihydropteroate synthase gene in Escherichia coli. When each construct was produced in a dihydropteroate synthase disrupted E. coli strain that required thymidine, the thymidine requirement was lost, indicating heterologous complementation had occurred. In the presence of sulfadoxine, the growth of the strain with the wild-type dihydropteroate synthase allele was inhibited while those containing each of the five mutant alleles grew, indicating that these mutations can confer sulfadoxine resistance in E. coli. When tested against twelve additional 'sulfa' drugs a variety of responses were obtained. All strains were resistant to sulfadiazine, but the wild-type allele conferred sensitivity to all other sulfa drugs. Three alleles conferred resistance to dapsone, a drug that is to be targetted for a new regime of malaria treatment in Africa. All mutant alleles remained sensitive to sulfachloropyridazine and sulfacetamide. These results suggest new drugs that could be tried for effective malaria treatment.  相似文献   

2.
T Triglia  P Wang  P F Sims  J E Hyde    A F Cowman 《The EMBO journal》1998,17(14):3807-3815
We have exploited the recently developed ability to trans- fect the malaria parasite Plasmodium falciparum to investigate the role of polymorphisms in the enzyme dihydropteroate synthase (DHPS), identified in sulfadoxine-resistant field isolates. By using a truncated form of the dhps gene, specific mutations were introduced into the endogenous gene by allelic replacement such that they were under the control of the endogenous promoter. Using this approach a series of mutant dhps alleles that mirror P.falciparum variants found in field isolates were found to confer different levels of sulfadoxine resistance. This analysis shows that alteration of Ala437 to Gly (A437G) confers on the parasite a 5-fold increase in sulfadoxine resistance and addition of further mutations increases the level of resistance to 24-fold above that seen for the transfectant expressing the wild-type dhps allele. This indicates that resistance to high levels of sulfadoxine in P.falciparum has arisen by an accumulation of mutations and that Gly437 is a key residue, consistent with its occurrence in most dhps alleles from resistant isolates. These studies provide proof that the mechanism of resistance to sulfadoxine in P.falciparum involves mutations in the dhps gene and determines the relative contribution of these mutations to this phenotype.  相似文献   

3.
4.
Malaria parasites (Plasmodium falciparum) provide an excellent system in which to study the genomic effects of strong selection in a recombining eukaryote because the rapid spread of resistance to multiple drugs during the last the past 50 years has been well documented, the full genome sequence and a microsatellite map are now available, and haplotype data can be easily generated. We examined microsatellite variation around the dihydrofolate reductase (dhfr) gene on chromosome 4 of P. falciparum. Point mutations in dhfr are known to be responsible for resistance to the antimalarial drug pyrimethamine, and resistance to this drug has spread rapidly in Southeast (SE) Asia after its introduction in 1970s. We genotyped 33 microsatellite markers distributed across chromosome 4 in 61 parasites from a location on the Thailand/Myanmar border. We observed minimal microsatellite length variation in a 12-kb (0.7-cM) region flanking the dhfr gene and diminished variation for approximately 100 kb (6 cM), indicative of a single origin of resistant alleles. Furthermore, we found the same or similar microsatellite haplotypes flanked resistant dhfr alleles sampled from 11 parasite populations in five SE Asian countries indicating recent invasion of a single lineage of resistant dhfr alleles in locations 2000 km apart. Three features of these data are of especially interest. (1). Pyrimethamine resistance is generally assumed to have evolved multiple times because the genetic basis is simple and resistance can be selected easily in the laboratory. Yet our data clearly indicate a single origin of resistant dhfr alleles sampled over a large region of SE Asia. (2). The wide valley ( approximately 6 cM) of reduced variation around dhfr provides "proof-of-principle" that genome-wide association may be an effective way to locate genes under strong recent selection. (3). The width of the selective valley is consistent with predictions based on independent measures of recombination, mutation, and selection intensity, suggesting that we have reasonable estimates of these parameters. We conclude that scanning the malaria parasite genome for evidence of recent selection may prove an extremely effective way to locate genes underlying recently evolved traits such as drug resistance, as well as providing an opportunity to study the dynamics of selective events that have occurred recently or are currently in progress.  相似文献   

5.
6.
We have analysed the whole mitochondrial (mt) genome sequences (each ~6 kilo nucleotide base pairs in length) of four field isolates of the malaria parasite Plasmodium falciparum collected from different locations in India. Comparative genomic analyses of mt genome sequences revealed three novel India-specific single nucleotide polymorphisms. In general, high mt genome diversity was found in Indian P. falciparum, at a level comparable to African isolates. A population phylogenetic tree placed the presently sequenced Indian P. falciparum with the global isolates, while a previously sequenced Indian isolate was an outlier. Although this preliminary study is limited to a few numbers of isolates, the data have provided fundamental evidence of the mt genome diversity and evolutionary relationships of Indian P. falciparum with that of global isolates.  相似文献   

7.
The multidrug resistance (MDR) phenotype in mammalian tumor cells can involve amplification of mdr genes that results in overexpression of the protein product termed P-glycoprotein. Chloroquine resistance (CQR) in Plasmodium falciparum has similarities with the MDR phenotype in tumor cells, and some isolates of P. falciparum have amplified levels of the pfmdr1 gene. To investigate the nature and origin of pfmdr1 amplicons, we have cloned large regions of a 110-kb amplicon from the CQR cloned isolate B8 by using the yeast artificial chromosome system. We have identified and sequenced the breakpoints of the amplicon by a novel method employing inverted polymerase chain reaction that is applicable to analysis of any large-scale repeat. We show that the five copies of the amplicon in this isolate are in a head to tail configuration. A string of 30 A's flank the breakpoints on each side of the amplified segment, suggesting a mechanism for the origin of the tandem amplification. Polymerase chain reaction analysis with oligonucleotides that cross the B8 breakpoint has shown in 26 independent CQR isolates, 16 of which contain amplified copies of pfmdr1, that amplification of the pfmdr1 gene in P. falciparum has arisen as multiple independent events. These results suggest that this region of the genome is under strong selective pressure.  相似文献   

8.
9.
We report the outcome of chloroquine treatment and the prevalence of mutations at codon 86 of the pfmdr1 gene, at codon 76 of the pfcrt gene, and at codon 108 of the pfdhfr gene in clinical isolates of Plasmodium falciparum collected from 30 children under 10 years of age living in the Comoros Union. This in vivo study was carried out in February and March 2001 in Moroni. Chloroquine treatment failed in 23 children (76.6%; 95% confidence interval: 57.7 to 90.1%). Subsequent genotyping showed that all P. falciparum isolates (100%) harboured a tyrosine residue at position 86 in pfMDR1. 83.3% (25/30) of these isolates harboured a mutation at position 76 in pfCRT and half (15/30) of these isolates also harboured a mutation at position 108 in pfDHFR. Chloroquine resistance is a real concern in the Comoros Union. The prevalence of pfDHFR mutant parasites is alarming. The alternative drugs proposed as a replacement for chloroquine as first-line treatment in Comoros, and the strategy to monitor the drug susceptibility of Plasmodium sp in this part of the Indian Ocean sub-region are discussed.  相似文献   

10.
ABSTRACT: BACKGROUND: Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance. METHODS: A total of 75 P. falciparum blood samples were collected from different districts of Pahang state, Malaysia. Single nucleotide polymorphisms in pfcrt gene (codons 76, 271, 326, 356 and 371) and pfmdr1 gene (codons 86 and 1246) were analysed by using mutation-specific nested PCR and restriction fragment length polymorphism (PCR-RFLP) methods. RESULTS: Mutations of pfcrt K76T and pfcrt R371I were the most prevalent among pfcrt gene mutations reported by this study; 52% and 77%, respectively. Other codons of the pfcrt gene and the positions 86 and 1246 of the pfmdr1 gene were found mostly of wild type. Significant associations of pfcrt K76T, pfcrt N326S and pfcrt I356T mutations with parasitaemia were also reported. CONCLUSION: The high existence of mutant pfcrt T76 may indicate the low susceptibility of P. falciparum isolates to CQ in Peninsular Malaysia. The findings of this study establish baseline data on the molecular markers of P. falciparum CQ resistance, which may help in the surveillance of drug resistance in Peninsular Malaysia.  相似文献   

11.
Field-selected metal tolerance in Orchesella cincta is correlated with overexpression of the single copy cadmium (Cd) inducible metallothionein (mt). Previously, we have demonstrated large phenotypic variation in mt gene expression, and a higher frequency of high-expression phenotypes in a tolerant population. Here, we describe midparent-offspring regression analysis of mt gene expression in a laboratory culture originating from a noncontaminated natural population. Families were either not exposed (n=47) or exposed to 0.5 micromol Cd per gram dry food (n=46). Mean mt gene expressions normalized to 28S rRNA and beta-actin RNA were generated using real-time RT-PCR applied to parents and offspring RNA and subjected to regression analysis. A significant heritability (h2) for mt gene expression was estimated between 0.36 (beta-actin normalized) and 0.46 (28S normalized) in Cd exposed families. Nontreated families did not yield a significant h2 value. Restriction Fragment Length Polymorphism analysis of the metallothionein promoter sequence revealed eight promoter alleles that show structural variation. Three alleles show increased frequencies in families with high mt expression. Another gene, croquemort (isolated from a differential screening for 1 micromole Cd treatment) showed no h2 of gene expression in response to 0.5 micromol Cd. This gene codes for a receptor-protein involved in recognition of apoptotic cells and may participate in the general stress response. The present data suggest that evolution of metal tolerance in O. cincta can occur in the field by selection for high mt expression due to structural changes in mt cis-regulation.  相似文献   

12.
The malaria parasite contains a nuclear genome with 14 chromosomes and two extrachromosomal DNA molecules of 6 kb and 35 kb in size. The smallest genome, known as the 6 kb element or mitochondrial DNA, has been sequenced from several Plasmodium falciparum isolates because this is a potential drug target. Here we describe the complete nucleotide sequence of this element from an Indian isolate of P. falciparum. It is 5967 bp in size and shows 99.6% homology with the 6 kb element of other isolates. The element contains three open reading frames for mitochondrial proteins-cytochrome oxidase subunit I (CoI), subunit III (CoIII) and cytochrome b (Cyb) which were found to be expressed during blood stages of the parasite. We have also sequenced the entire cyb gene from several Indian isolates of P. falciparum. The rate of mutation in this gene was very low since 12 of 14 isolates showed the identical sequence. Only one isolate showed a maximum change in five amino acids whereas the other isolate showed only one amino acid change. However, none of the Indian isolates showed any change in those amino acids of cyb which are associated with resistance to various drugs as these drugs are not yet commonly used in India.  相似文献   

13.
Plasmodium falciparum, the deadliest malarial parasite species, has developed resistance against nearly all man-made antimalarial drugs within the past century. However, quinine (QN), the first antimalarial drug, remains efficacious worldwide. Some chloroquine resistant (CQR) P. falciparum strains or isolates show mild cross resistance to QN, but many do not. Further optimization of QN may provide a well-tolerated therapy with improved activity versus CQR malaria. Thus, using the Heck reaction, we have pursued a structure-activity relationship study, including vinyl group modifications of QN. Certain derivatives show good antiplasmodial activity in QN-resistant and QN-sensitive strains, with lower IC(50) values relative to QN.  相似文献   

14.
The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution.  相似文献   

15.
Organelles, such as mitochondria and chloroplasts, are derived from endosymbionts. Gene transfer events from organelles to the nucleus have occurred over evolutionary time. In the case that a transferred gene in the nucleus needs to go back to the original organelle, it must obtain targeting information for sorting its protein to that organelle. Here, we reveal that the genes for the ribosomal proteins L2 and S4 in the Arabidopsis thaliana mitochondrial (mt) genome contain information for protein targeting into the mitochondria. Similarly, the genes for the ribosomal proteins L2 and S19 in the Oryza sativa mt genome contain information for protein targeting into mitochondria. These results suggest that targeting information already existed in each gene in the plant mt genome before the transfer event to the nucleus occurred. We provide new insights into the timing of the appearance of targeting signals in evolution.  相似文献   

16.
Resistance to the antimalarial drug chloroquine has been linked with polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum, yet the mechanism by which this gene confers the reduced drug accumulation phenotype associated with resistance is largely unknown. To investigate the role of pfcrt in mediating chloroquine resistance, we challenged P. falciparum clones differing only in their pfcrt allelic form with the "varying-trans" procedure. In this procedure, movement of labeled substrate across a membrane is measured when unlabeled substrate is present on the trans side of the membrane. If a transporter is mediating the substrate flow, a stimulation of cis-to-trans movement may be observed with increasing concentrations of trans substrate. We present evidence for an association of those pfcrt alleles found in chloroquine-resistant P. falciparum strains with the phenomenon of stimulated chloroquine accumulation under varying-trans conditions. Such an association is not seen with polymorphisms within pfmdr1, which encodes a homologue of the human multidrug resistance efflux pump. Our data are interpreted in terms of a model in which pfcrt is directly or indirectly involved in carrier-mediated chloroquine efflux from resistant cells.  相似文献   

17.
Three rust resistance specificities, N, N1 and N2, map to the complex N locus of flax. We used a degenerate PCR approach, with primers directed to the nucleotide binding site (NBS) domain characteristic of many plant resistance genes, to isolate resistance gene analogs (RGAs) from flax. One RGA clone detected RFLPs co-segregating with alleles of the N locus. With this probe we isolated four related genes that occur within a 30kbp region and encode proteins with NBS and leucine-rich repeat (LRR) domains and N-terminal Toll/Interleukin-1 Receptor homology (TIR) domains. One of these four genes was identified as the N resistance gene by sequence analysis of three mutant alleles and by transgenic expression. We isolated homologous genes from two flax lines containing the N1 or N2 specificities and from flax lines carrying no N locus resistance specificities. Analysis of shared polymorphisms among this set of 18 N locus sequences revealed three groups of genes with independent lineages. Sequence exchanges have only occurred between genes within each group, but not between groups. Two of the groups contain only one sequence from each haplotype and probably represent orthologous genes. However, the third group contains two genes from each haplotype. We suggest that the re-assortment of variation by recombination/gene conversion at this locus is limited by the degree of sequence identity between genes.  相似文献   

18.
Plasmodium falciparum drug resistance is a major problem in malaria endemic areas. Molecular markers and in vitro tests have been developed to study and monitor drug resistance. However, none, used alone, can provide sufficient data concerning the level of drug resistance and to issue precise guidelines for drug use policies in endemic areas. We propose real-time PCR for the simultaneous detection of pfcrt and pfmdr1 genes mutations and to determine the half-maximal inhibitory response (IC(50)) of antimalarial drug. Using hybridization probes and SybrGreen technology on LightCycler instrument, point mutations of pfcrt and pfmdr1 genes have been successfully detected in 161 human blood samples and determination of IC values was applied to chloroquine-sensitive and chloroquine-resistant strains. Moreover, mixed infections caused by P. falciparum clones with wild-type or mutant alleles could be efficiency separated. The aim of this study was not to provide definitive data concerning the rate of mutations in an endemic area, but to describe a powerful method allowing the quantification of DNA for IC(50) determination and the detection of major pfmdr1 and pfcrt mutations.  相似文献   

19.
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.  相似文献   

20.
The amino-terminal region of the serine repeat antigen (SERA) of Plasmodium falciparum is a major malaria-vaccine candidate. Variation in this molecule is essentially dimorphic and alleles may be grouped into the types FCR3, K1 and Honduras1. The Honduras1-type is thought to be the product of homologous recombination between FCR3 and K1 alleles. Here we have examined patterns of sequence diversity in exon II of SERA gene, which encodes most of the amino-terminal region of the antigen, in wild P. falciparum isolates from Indonesia (n=60), Myanmar (n=10) and Thailand (n=14). Among the Indonesian isolates the FCR-3 type predominated (56/60), twenty of which we characterized as novel alleles. A new K1-type allele was also found. In Myanmar, however, all isolates displayed K1-type SERA sequences, which included one new allele. The Honduras1-type was not detected in both countries. In contrast, the 14 isolates from Thailand displayed all three allelic types, with one new Honduras1-type and three new K1-type alleles. On examining the global distribution of SERA alleles by combining previously published sequence data with our results, the FCR3-type alleles predominated in Indonesia, Brazil, and Solomon Islands, but were not found in wild isolates from Myanmar and Africa. Brazil was the only area where K1-type alleles were not found. The distribution of Honduras1-type alleles seems to be mostly restricted to parasite populations from Vietnam, Thailand and Africa. In the allelic families FCR3 and K1, most diversity resulted from variation in sequence and number of octamer repeat units and of allotypes encoding the stretch of serine residues. Sequence analysis indicated that both insertions and deletions of repetitive motifs (creating variation within dimorphic allelic families) and homologous recombination between alleles belonging to different allelic families (creating Honduras1-type alleles) play a role in generating new SERA alleles. Since repeat motifs in the amino-terminal region of SERA contain epitopes recognized by parasite-inhibitory antibodies, sequence variation in exon II may represent one of the parasite's immune-evasion strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号