首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Bloom's syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Δ/Δ colonies have a wild-type colony morphology, while the sgs1Δ/Δ mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Δ/Δ mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Δ/Δ mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Δ/Δ mutants exhibit an increase in genome instability; no change was observed in the sgs1Δ/Δ mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition.  相似文献   

2.
It is well established that hyperoxia injures and kills alveolar endothelial and type I epithelial cells of the lung. Although type II epithelial cells remain morphologically intact, it remains unclear whether they are also damaged. DNA integrity was investigated in adult mice whose type II cells were identified by their endogenous expression of pro-surfactant protein C or transgenic expression of enhanced green fluorescent protein. In mice exposed to room air, punctate perinuclear 8-oxoguanine staining was detected in approximately 4% of all alveolar cells and in 30% of type II cells. After 48 or 72 h of hyperoxia, 8-oxoguanine was detected in 11% of all alveolar cells and in >60% of type II cells. 8-Oxoguanine colocalized by confocal microscopy with the mitochondrial transmembrane protein cytochrome oxidase subunit 1. Type II cells isolated from hyperoxic lungs exhibited nuclear DNA strand breaks by comet assay even though they were viable and morphologically indistinguishable from cells isolated from lungs exposed to room air. These data reveal that type II cells exposed to in vivo hyperoxia have oxidized and fragmented DNA. Because type II cells are essential for lung remodeling, our findings raise the possibility that they are proficient in DNA repair.  相似文献   

3.
Copper is an essential micronutrient that functions as an enzymatic cofactor in a wide range of cellular processes. Although adequate Cu levels are essential for normal metabolism, excess Cu can be toxic to cells. Cellular responses to copper deficiency and overload involve changes in the expression of genes directly and indirectly involved in copper metabolism. However little is known on the effect of physiological copper concentration on gene expression changes. In the current study we aimed to establish whether the expression of genes encoding enzymes related to cholesterol (hmgcs1, hmgcr, fdft) and fatty acid biosynthesis and LDL receptor can be induced by an iso-physiological copper concentration. The iso-physiological copper concentration was determined as the bioavailable plasmatic copper in a healthy adult population. In doing so, two blood cell lines (Jurkat and THP-1) were exposed for 6 or 24 h to iso- or supraphysiological copper concentrations. Our results indicated that in cells exposed to an iso-physiological copper concentration the early induction of genes involved in lipid metabolism was not mediated by copper itself but by the modification of the cellular redox status. Thus our results contributed to understand the involvement of copper in the regulation of cholesterol metabolism under physiological conditions.  相似文献   

4.
5.
6.
Journal of Bioenergetics and Biomembranes - Pollution is considered a risk factor for cardiovascular disease; however, the mechanisms to explain this relationship are not well understood; ozone is...  相似文献   

7.
Esophageal squamous cell carcinoma (ESCC) has a high morbidity in China and its treatment depends greatly on adjuvant chemotherapy. However, DNA damage repair in cancer cells severely affects the outcome of treatment. This study investigated the potential mechanism regarding mediator of DNA-damage checkpoint 1 (MDC1) and minichromosome maintenance proteins (MCMs) during DNA damage in ESCC. Recombinant vectors of MDC1 and MCMs with tags were constructed and transfected into human ESCC cell line TE-1. Immunoprecipitation and mass spectrometry were performed to screen the MCMs interacting with MDC1, and direct interaction was confirmed by glutathione S-transferase (GST) pulldown assay in vitro. MCM2 and MCM6 were knocked down by shRNAs, after which chromatin fraction and foci forming of MDC1 upon bleomycin-induced DNA damage were examined. The results showed that MCM2/3/5/6 were immunoprecipitated by antibodies against the tag of MDC1 in TE-1 nuclei, and the GST pull-down assay indicated the direct interaction. Knockdown of MCM2 or MCM6 reduced the chromatin fraction of MDC1 according to Western blot results. Moreover, knockdown of MCM2 or MCM6 could significantly inhibit foci forming of MDC1 in TE-1 nuclei in response to bleomycin-induced DNA damage (p < 0.001). This study indicates the direct interaction between MDC1 and MCMs in TE-1 nuclei. Downregulation of MCMs can inhibit chromatin fraction and foci forming of MDC1 in TE-1 cells upon DNA damage, which suggests MCMs and MDC1 as potential targets to improve the outcome of chemotherapy in ESCC.  相似文献   

8.
9.
Plants use signaling pathways involving salicylic acid, jasmonic acid, and ethylene to defend against pathogen and herbivore attack. Many defense response genes involved in these signaling pathways have been characterized, but little is known about the selective pressures they experience. A representative set of 27 defense response genes were resequenced in a worldwide set of 96 Arabidopsis thaliana accessions, and patterns of single nucleotide polymorphisms (SNPs) were evaluated in relation to an empirical distribution of SNPs generated from either 876 fragments or 236 fragments with >400 bp coding sequence (this latter set was selected for comparisons with coding sequences) distributed across the genomes of the same set of accessions. Defense response genes have significantly fewer protein variants, display lower levels of nonsynonymous nucleotide diversity, and have fewer nonsynonymous segregating sites. The majority of defense response genes appear to be experiencing purifying selection, given the dearth of protein variation in this set of genes. Eight genes exhibit some evidence of partial selective sweeps or transient balancing selection. These results therefore provide a strong contrast to the high levels of balancing selection exhibited by genes at the upstream positions in these signaling pathways.  相似文献   

10.
The surface level of Lake Kinneret is regulated to remain between –209 m and –213 m msl. During the stratified period, soluble reactive phosphorus (SRP), ammonium (NH inf4 sup+ ) and dissolved sulphide (H2S) accumulate in the hypolimnion. The concentration of these solutes, which are direct and indirect products of the decomposition of organic matter, increase considerably in summers with lower lake levels. A numerical model describing depth-averaged hypolimnion and epilimnion current velocities for high and low lake levels was adapted for Lake Kinneret. Simulated hypolimnetic currents were shown to be stronger for low lake levels as a result of the fact that low lake levels are characterized by a thinner hypolimnion while the thickness of the epilimnion remains unchanged. We suggest that the stronger hypolimnetic currents have the following consequences: 1. turbulence is induced, 2. the enhanced turbulence results in higher resuspension, 3. because SO4= is available to bacteria on resuspended particles, mineralization rates are enhanced, and 4. focusing of fine sediments and associated organic matter to the pelagic zone is enhanced.  相似文献   

11.
The effect of high concentrations of arsenic has been investigated in Caenibacter arsenoxydans, a beta-proteobacterium isolated from an arsenic contaminated environment and able to oxidize arsenite to arsenate. As the genome of this bacterium has not yet been sequenced, the use of a specific proteomic approach based on nano-high performance liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) studies and de novo sequencing to perform cross-species protein identifications was necessary. In addition, a random mutational analysis was performed. Twenty-two proteins and 16 genes were shown to be differentially accumulated and expressed, respectively, in cells grown in the presence of arsenite. Two genes involved in arsenite oxidation and one in arsenite efflux as well as two proteins responsible for arsenate reduction were identified. Moreover, numerous genes and proteins belonging to various functional classes including information and regulation pathways, intermediary metabolism, cell envelope and cellular processes were also up- or down-regulated, which demonstrates that bacterial response to arsenic is pleiotropic.  相似文献   

12.
13.
Lukas J  Lukas C  Bartek J 《Nature cell biology》2011,13(10):1161-1169
Following the discovery in 1998 of γ-H2AX, the first histone modification induced by DNA damage, interest in the changes to chromatin induced by DNA damage has exploded, and a vast amount of information has been generated. However, there has been a discrepancy between our rapidly advancing knowledge of how chromatin responds to DNA damage and the understanding of why cells mobilize large segments of chromatin to protect the genome against destabilizing effects posed by tiny DNA lesions. Recent research has provided insights into these issues and suggests that chromatin responses induced by DNA damage are not simply the accumulation of 'nuclear foci' but are mechanisms required to guard genome integrity.  相似文献   

14.
15.
16.
17.
18.
We have previously established a reverse genetic system for studying excision of the transposable element Ds1 in maize plants. Ds1 carried by the genome of maize streak virus (MSV) is introduced into maize plants by agroinfection. Excision of Ds1 from the MSV genome depends on the presence of an active Ac element in the recipient maize plants. With the purpose of exploiting MSV-Ds1 as vector for maize transformation, we studied different genes encoding the transposase (TPase) for their efficiency of activating Ds1 excision. These genes were inserted in the same T-DNA carrying MSV-Ds1 and introduced into maize plants by Agrobacterium-mediated transformation. We showed that the wild-type TPase transcribed by the 2 promoter produced much higher efficiency of Ds1 excision than that transcribed by the Ac promoter. In contrast to what had been observed in tobacco and petunia, the truncated TPase (103–807) lacking the amino-terminal 102 amino acids gave a much more reduced Ds1 excision efficiency than the wild-type TPase when both genes were transcribed by the 2 promoter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号