首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

Objectives

To investigate the potential of interleukin (IL)-15 as a novel adjuvant for Mycobacterium tuberculosis (Mtb) antigen 85A (Ag85A) vaccine.

Results

C57BL/6 mice were intramuscularly immunized three times with a plasmid expressing the Ag85A-IL-15 fusion protein (pcDNA3.1-Ag85A-IL-15), with the empty pcDNA3.1 vector and the pcDNA3.1-Ag85A as control. Mice vaccinated with pcDNA3.1-Ag85A-IL-15 generated more secretory IgA (sIgA) into their lung (209 ± 21 μg/ml) and acquired an enhanced serum IgG response to Ag85A. IgG2a/IgG1 ratios were upregulated, natural killer cell activity was augmented and Ag85A-specific splenic T cell proliferation was enhanced in these mice as well. Vaccination with pcDNA3.1-Ag85A-IL-15 promoted the polarization of CD4+ T cells towards a Th1 type in the spleen, and significantly upregulated the serum level of interferon (IFN)-γ (458 ± 98 pg/ml), a typical Th1 cytokine. IFN-γ-expressing CD8+ cells were also increased in the spleen after pcDNA3.1-Ag85A-IL-15 immunization.

Conclusions

A superior immune type I response in mice vaccinated with plasmid Ag85A-IL-15 has been achieved.
  相似文献   

2.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

3.
为了筛选和确定用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、polr、evt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位,本研究使用表达上述6种抗原的复制型DNA疫苗和非复制型重组痘苗病毒疫苗联合免疫BALB/c小鼠,通过矩阵设计将HIV-1 B(C)亚型6种相应抗原全序列肽库分别混合成肽池,使用肽池对免疫小鼠进行IFN-γELISPOT检测,根据检测结果确定肽库中特异反应的优势表位肽。结果显示:筛选到七条针对Gag的特异表位肽,其中有5条与文献报道相同,另2条为新表位肽;筛选到3条针对Pol蛋白特异表位肽,其中一条为新表位肽;筛选到2条针对gp160特异表位肽,其中一条为新表位肽;在Nef肽库中筛选到一条新的表位肽;从Tat肽库中筛选到3条表位肽,这三条肽在肽库中是连续的序列,都包含(或部分包含)网上公布的表位序列;在Rev肽库中没有筛选到能够产生阳性反应的特异性表位肽。本研究使用IFN-γELISPOT方法筛选和确定了可用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、pol、revt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位。  相似文献   

4.
人乳头瘤病毒16型E5与IL-12联合基因疫苗的免疫活性   总被引:1,自引:0,他引:1  
为了研制人乳头瘤病毒16型(HPV16)防治性疫苗,分析了HPV16 E5与IL-12联合基因疫苗的免疫活性。将构建的pcDNA3.1(+)/E5与pcDNA3.1(+)/IL-12联合免疫BALB/c小鼠,以ELISA测定小鼠血清中抗HPV16 E5 IgG水平、小鼠脾细胞培养上清中IFN-γ和IL-4含量;MTT法检测脾淋巴细胞增殖反应。结果显示末次免疫后,联合基因疫苗组和单基因疫苗组血清IgG A450值分别明显高于pcDNA3.1(+)组、pcDNA3.1(+)/IL-12组和PBS组(P<0.01);且联合基因疫苗组显著高于单基因疫苗组(P<0.01)。联合基因疫苗组和单基因疫苗组的IFN-γ和IL-4含量分别均明显高于pcDNA3.1(+)组、pcDNA3.1(+)/IL-12组和PBS组IFN-γ和IL-4含量(P<0.01),且联合基因疫苗组含量显著高于单基因疫苗组(P<0.01)。联合基因疫苗组和单基因疫苗组脾淋巴细胞刺激指数(SI)分别显著高于pcDNA3.1(+)组、pcDNA3.1(+)/IL-12组和PBS组(P<0.01);联合基因疫苗组与单基因疫苗组比较,SI差异无统计学意义(P>0.05)。结果表明HPV16 E5单基因疫苗以及与IL-12联合基因疫苗均能刺激机体产生较强的免疫应答,且联合基因疫苗优于单基因疫苗。  相似文献   

5.
Foot-and-mouth disease virus (FMDV) belongs to thegenus Aphthovirus of the family Picornavidae. The FMDVgenome is a copy of positive-sense, single-stranded RNA,which contains one large open reading frame (ORF). TheORF is translated into a polypeptide, which undergoesautoproteolytic cleavage to produce the structural and non-structural proteins and ultimately forms mature viral pro-teins [1,2]. FMD is caused by the FMDV, which is a highly conta-gious vesicular disease of cloven-hoofe…  相似文献   

6.
7.

Background

Safety and cellular immunogenicity of rising doses and varying regimens of a poly-epitope vaccine were evaluated in advanced metastatic melanoma. The vaccine comprised plasmid DNA and recombinant modified vaccinia virus Ankara (MVA) both expressing a string (Mel3) of seven HLA.A2/A1 epitopes from five melanoma antigens.

Methods

Forty-one HLA-A2 positive patients with stage III/IV melanoma were enrolled. Patient groups received one or two doses of DNA.Mel3 followed by escalating doses of MVA.Mel3. Immunisations then continued eight weekly in the absence of disease progression. Epitope-specific CD8+ T cell responses were evaluated using ex-vivo tetramer and IFN-γ ELISPOT assays. Safety and clinical responses were monitored.

Results

Prime-boost DNA/MVA induced Melan-A-specific CD8+ T cell responses in 22/31 (71%) patients detected by tetramer assay. ELISPOT detected a response to at least one epitope in 10/31 (32%) patients. T cell responder rates were <50% with low-dose DNA/MVA, or MVA alone, rising to 91% with high-dose DNA/MVA. Among eight patients showing evidence of clinical benefit—one PR (24 months+), five SD (5 months+) and two mixed responses—seven had associated immune responses. Melan-A-tetramer+ immunity was associated with a median 8-week increase in time-to-progression (P = 0.037) and 71 week increase in survival (P = 0.0002) compared to non-immunity. High-dose vaccine was well tolerated. The only significant toxicities were flu-like symptoms and injection-site reactions.

Conclusions

DNA.Mel3 and MVA.Mel3 in a prime-boost protocol generated high rates of immune response to melanoma antigen epitopes. The treatment was well tolerated and the correlation of immune responses with patient outcomes encourages further investigation.  相似文献   

8.
To evaluate immunity induced by a novel DNA prime-boost regimen, we constructed a DNA plasmid encoding the gag and pol genes from simian immunodeficiency virus (SIV) (SIVgag/pol DNA), in addition to a replication-deficient vaccinia virus strain DIs recombinant expressing SIV gag and pol genes (rDIsSIVgag/pol). In mice, priming with SIVgag/pol DNA, followed by rDIsSIVgag/pol induced an SIV-specific lymphoproliferative response that was mediated by a CD4+-T-lymphocyte subset. Immunization with either vaccine alone was insufficient to induce high levels of proliferation or Th1 responses in the animals. The prime-boost regimen also induced SIV Gag-specific cellular responses based on gamma interferon secretion, as well as cytotoxic-T-lymphocyte responses. Thus, the regimen of DNA priming and recombinant DIs boosting induced Th1-type cell-mediated immunity, which was associated with resistance to viral challenge with wild-type vaccinia virus expressing SIVgag/pol, suggesting that this new regimen may hold promise as a safe and effective vaccine against human immunodeficiency virus type 1.  相似文献   

9.
Infections by the intracellular protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals which can cause severe or lethal toxoplasmosis. So the development of a more effective vaccine is needed urgently. A multiantigenic vaccine against toxoplasmosis was constructed in the present study, which contains two T. gondii antigens, SAG1 and MIC4 on the basis of previous immunological and immunization studies. The eukaryotic plasmid pcDNA3.1-SAG1-MIC4, pcDNA3.1-SAG1, pcDNA3.1-MIC4 were constructed first, which can express surface protein SAG1 and microneme protein MIC4 from different stages of T. gondii life cycle, and the expression ability of these DNA vaccine in HeLa cells were examined by Western blot. The efficacy of these plasmids with or without co-administration of a plasmid encoding cholera toxin A2/B as a genetic adjuvant by mucosal way to protect BALB/c mice against toxoplasmosis was evaluated. We found these vaccines were able to elicit a significant humoral and cellular immune response in vaccinated mice and they can increase survival rate and prolong the life of mice that were infected by T. gondii especially in the pcDNA3.1-SAG1-MIC4 group. Co-delivery of cholera toxin A2/B further enhanced the potency of multiantigenic DNA vaccine by intranasal route. These results encourage further research towards achieving vaccinal protection against the T. gondii in animals and humans.  相似文献   

10.

Objective

To evaluate the combined effects of CpG oligodeoxynucleotides (CpG-ODNs) adjuvant and subcutaneous injection route on efficacy of a HIV-1-tat DNA vaccine candidate using BALB/c mice as an animal model.

Results

Evaluation of cellular and humoral immunity of mice injected subcutaneously with HIV-1-tat gene cloned into a pcDNA3.1 vector indicated that significant levels of IFN-γ cytokine secretion (900 pg/ml), lymphocyte proliferation (2.5 stimulation index) and IgG2a (1.45 absorbance 450 nm) production could be achieved. These indicators of stimulated cellular immunity were elicited 2 weeks after the last injection (P < 0.05).

Conclusions

Formulation of HIV-1-tat DNA vaccine candidate with CpG-ODNs as an adjuvant while administrated subcutaneously are a promising approach to induce effective cellular immunity responses against HIV-1 infection.
  相似文献   

11.
Criteria for the design of peptide vaccines to prevent AIDS are presented. The best vaccine candidates contain both B and T lymphocyte-defined epitopes in regions conserved in sequence between viral isolates. We propose that attention should focus on proteins specified by the gag and, possibly, pol genes in addition to the env gene envelope glycoproteins being actively studied. The predictions of B- and T-epitopes are refined by consideration of secondary structure prediction and inter-isolate sequence variability to suggest peptides from env, gag and pol that would be the best vaccine candidates.  相似文献   

12.
This study investigated the protective capacity of the recombinant Taenia saginata Tso18 antigen administered as a DNA vaccine in the Taenia crassiceps murine model of cysticercosis. This Tso18 DNA sequence, isolated from a T. saginata oncosphere cDNA library, has homologies with Taenia solium and Echinococcus sp. It was cloned in the pcDNA3.1 plasmid and injected once intramuscularly into mice. Compared to saline-vaccinated control mice, immunization reduced the parasite burden by 57.3-81.4%, while lower levels of non-specific protection were induced in control mice injected with the plasmid pcDNA3.1 (18.8-33.1%) or a plasmid with irrelevant construct, pcDNA3.1/3D15 (33.4-38.8%). Importantly, significant levels of protection were observed between the pcDNA3.1/Tso18 plasmid and pcDNA3.1/3D15 plasmid immunized mice. Mice immunized with pTso18 synthesized low levels of, primarily IgG1 sub-class, antibodies. These antibodies were shown to recognize a 66 kDa antigen fraction of T. crassiceps and T. solium. Splenocytes enriched in both CD4+CD8- and CD4-CD8+ T cells from these vaccinated mice proliferated in vitro when exposed to antigens from both T. solium and T. crassiceps cestodes. Immunolocalization studies revealed the Tso18 antigen in oncospheres of T. saginata and T. solium, in the adult tapeworm and in the tegument of T. solium cysticerci. The protective capacity of this antigen and its extensive distribution in different stages, species and genera of cestodes points to the potential of Tso18 antigen for the possible design of a vaccine against cestodes.  相似文献   

13.
Preventive and/or therapeutic vaccines against Human Immunodeficiency Virus (HIV-1) are urgently required. Induction of cellular immunity is favoured since these responses correlate with control of HIV-1. Recombinant fowlpoxvirus (FPV) vaccines encoding both HIV-1 gag/pol and interferon-gamma (FPV gag/pol-IFNΓ) were hypothesised to enhance HIV-specific cellular immunity and were further evaluated in macaques previously infected with HIV-1. A novel assay to detect IFNΓ secretion following HIV antigen stimulation of whole blood was developed to further assess the safety and immunogenicity of the FPV gag/pol-IFNΓ vaccine. Immunisation with FPV gag/pol-IFNΓ safely enhanced HIV-specific IFNΓ secretion following ex vivo stimulation of whole blood, greater than that observed following FPV gag/pol vaccination not co-expressing IFNΓ. Both HIV-specific IFNΓ-spot-forming cells by ELISPOT and CD69 expression by CD4+ lymphocytes were also enhanced following FPV gag/pol-IFNΓ vaccination. Hence, the FPV-HIV vaccine co-expressing IFNΓ stimulated HIV-specific T cell responses in macaques, and should be further evaluated as a therapeutic or preventive HIV vaccine.  相似文献   

14.
利用PCR方法分别扩增猪繁殖与呼吸综合征病毒全长GP5基因(E蛋白),EMCV的核糖体介入位点(IRES)序列及猪γ-干扰素(IFN-γ)基因全长序列,序列测定正确后用DNA重组法将三者串联后插入pAdenoVator-CM V5-IRES-GFP穿梭质粒中,形成的穿梭质粒plRES-GP5-IFN-γ用PmeⅠ线性化后,与腺病毒骨架载体pAdEasy-1共转化感受态大肠埃希氏菌BJ5183,经同源重组,构建成含有GP5基因和IFN-γ基因的重组腺病毒载体,pacⅠ酶切线性化充分暴露反向末端重复序列后,脂质体转染HEK293A细胞,借助GFP的表达可以在转染后的2~3天观察到包装病毒rAdeno-GP5-IFN-γ产生,7~10天出现病毒蚀斑。经PCR法及酶切证实各中间过程载体及最终的包装病毒中携带有目的基因,western-blot证实两基因在腺病毒中得到了表达。大肠杆菌内同源重组法能有效和较为方便的构建出含有目的基因的腺病毒载体rAdeno-GP5-IFN-γ,重组子能够在HEK293细胞中稳定扩增,病毒包装的成功为进一步研究PRRSVE蛋白的免疫效果及IFN-γ的作用奠定了基础。  相似文献   

15.
目的:确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原,提高各个基因在相应疫苗载体中的表达水平,为研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定实验基础。方法:选择HIV B′/C亚型5个以细胞免疫为主的抗原(Gag、Pol、Rev、Tat和Nef),进行基因序列优化及表达结构改造,并分别构建以质粒DNA和重组痘苗病毒为载体的两大类HIV-1疫苗。结果:优化前后5个目的基因均能够在这2种载体中有效表达;虽然采用相同的基因修饰策略,但与痘苗病毒载体相比,在DNA载体中各基因表达水平的提高均较为明显;含有抑制性序列(INS)的gag、pol基因经密码子优化后,Gag、Pol蛋白的表达均明显提高,其中Pol蛋白的提高更为明显,单独pol基因比gagpol天然结构表达水平要高,而gag基因却变化不大;对于rev、tat、nef基因而言,优化后的单独基因结构要略高于优化后的融合结构(hRTN),且二者均高于未优化的融合结构(RTN)。结论:为进一步确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原、研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定了实验基础,为进一步研究DNA疫苗和重组痘苗病毒疫苗联合免疫提供了实验依据。  相似文献   

16.
MAGE-3 DNA疫苗的构建及其免疫效果的观察   总被引:4,自引:0,他引:4  
通过RT PCR方法扩增MAGE 3cDNA ,以pcDNA3 1+为载体 ,构建重组表达质粒pcDNA3 1 MAGE 3。重组质粒用脂质体转染鼠B16细胞 ,经RT PCR、细胞免疫染色及免疫印迹法鉴定转化细胞中MAGE 3的表达。以 10 0 μg质粒剂量肌肉注射接种小鼠 ,间隔 10天 ,共 3次 ,以空载体和PBS为对照。结果 ,重组质粒免疫的小鼠 ,其脾淋巴细胞对MAGE 3阳性靶细胞的杀伤活性为 51 0 8± 7 41% ,与空载体组 (8 44± 1 89% )及PBS组 (5 76± 1 75% )相比 ,差异有显著性 (P <0 0 1) ,而对MAGE 3阴性靶细胞的杀伤活性分别为 8 2 1± 1 65% ,7 68± 1 56%和 5 13±1 42 % ,其差异无显著性 ;MAGE 3DNA疫苗组免疫血清 1∶15稀释时能检测到抗MAGE 3抗体 ,脾细胞培养上清中Th1类细胞因子IFN γ、IL 2水平明显升高 ,外周血中CD4+、CD8+T细胞也提高 ,小鼠肿瘤的生长速度明显减慢 ,与对照组相比 ,差异显著 (P <0 0 1)。说明MAGE 3重组质粒免疫小鼠可以诱导小鼠产生特异性的体液和细胞免疫应答  相似文献   

17.
Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2bxd (BALB/c × C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.  相似文献   

18.
Preventive and/or therapeutic vaccines against Human Immunodeficiency Virus (HIV-1) are urgently required. Induction of cellular immunity is favoured since these responses correlate with control of HIV-1. Recombinant fowlpoxvirus (FPV) vaccines encoding both HIV-1 gag/pol and interferon-gamma (FPV gag/pol-IFNgamma) were hypothesised to enhance HIV-specific cellular immunity and were further evaluated in macaques previously infected with HIV-1. A novel assay to detect IFNgamma secretion following HIV antigen stimulation of whole blood was developed to further assess the safety and immunogenicity of the FPV gag/pol-IFNgamma vaccine. Immunisation with FPV gag/pol-IFNgamma safely enhanced HIV-specific IFNgamma secretion following ex vivo stimulation of whole blood, greater than that observed following FPV gag/pol vaccination not co-expressing IFNgamma. Both HIV-specific IFNgamma-spot-forming cells by ELISPOT and CD69 expression by CD4+ lymphocytes were also enhanced following FPV gag/pol-IFNgamma vaccination. Hence, the FPV-HIV vaccine co-expressing IFNgamma stimulated HIV-specific T cell responses in macaques, and should be further evaluated as a therapeutic or preventive HIV vaccine.  相似文献   

19.
Several gene-based vaccine approaches are being tested to drive multivalent cellular immune responses to control HIV-1 viral variants. To compare the utility of these approaches, HLA-A*0201 transgenic mice were genetically immunized with plasmids encoding wild-type (wt) gag-pol, codon-optimized (CO) gag-pol, and an expression library immunization (ELI) vaccine genetically re-engineered to express non-CO fragments of gag and pol fused to ubiquitin for proteasome targeting. Equimolar delivery of each vaccine into HLA-A*0201 transgenic mice generated CD8 T cell responses, with the ELI vaccine producing up to 10-fold higher responses than the wt or CO gag-pol plasmids against cognate and mutant epitopes. All three vaccines generated multivalent CD8 responses against varying numbers of epitopes after priming. However, when the animals were immunized again, the wt and CO gag-pol vaccines boosted only the responses against a subset of epitopes and attenuated the responses against all other Ags including epitopes from clade and drug-resistant viral variants. In contrast, the ELI vaccine boosted CD8 responses against all of the gag-pol Ags and against mutant epitopes from clade and drug-resistant variants. These data suggest that HIV-1 vaccines expressing structurally intact gag and pol proteins drive immunofocused CD8 responses that reduce the repertoire of T cell responses. In contrast, the genetically re-engineered ELI vaccine appears to better maintain the multivalent CD8 responses that may be required to control HIV-1 viral variants.  相似文献   

20.
HIV-1 is a fundamentally difficult target for vaccines due to its high mutation rate and its repertoire of immunoevasive strategies. To address these difficulties, a multivalent, proteasome-targeted, live genetic vaccine was recently developed against HIV-1 using the expression library immunization approach. In this HIV-1 vaccine all open reading frames of HIV-1 are expressed from 32 plasmids as Ag fragments fused to the ubiquitin protein to increase Ag targeting to the proteasome to enhance CTL responses. In this work we demonstrate the ability of the HIV-1 library vaccine to simultaneously provoke robust HLA-A*0201-restricted T cell responses against all 32 HIV-1 library vaccine Ags after single immunization by gene gun. These CD8 T cell responses included HLA-A*0201-restricted CTL activity, CD8/IFN-gamma T cell responses, and HLA tetramer binding against defined immunodominant epitopes in gag, pol, env, and nef as well as potent CD8/IFN-gamma responses against undefined HLA-A*0201-restricted epitopes in all remaining Ags of the library. CD8 responses mediated by single gag, pol, env, and nef plasmids from the vaccine demonstrated little reduction in specific T cell responses when these plasmids were diluted into the context of the full 32-plasmid library, suggesting that Ag dominance or immune interference is not an overt problem to limit the efficacy of this complex vaccine. Therefore, this work demonstrates the ability of the HIV-1 library vaccine to generate robust multivalent genome-wide T cell responses as one approach to control the highly mutable and immunoevasive HIV-1 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号