首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sortase enzymes belong to a family of transpeptidases found in Gram-positive bacteria. Sortase is responsible for the reaction that anchors surface protein virulence factors to the peptidoglycan cell wall of the bacteria. The compound (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile (DMMA) has previously been reported as a novel sortase inhibitor in vitro, but the in vivo effects of DMMA have not been studied. Here, we evaluated the in vivo effects of DMMA against infection by wild-type and sortase A- and/or sortase B-deficient Staphylococcus aureus in Balb/c mice. With DMMA treatment, survival rates increased and kidney and joint infection rates decreased (p < 0.01) in a dose-dependent manner. The rate of kidney infection was significantly reduced in the mice treated with sortase A knock-out S. aureus (p < 0.01). These results indicate that by acting as a potent inhibitor of sortase A and moderate inhibitor of sortase B, DMMA can decrease kidney and joint infection rates and reduce mortality in mice infected with S. aureus. These findings suggest that DMMA is a promising therapeutic compound against Gram-positive bacteria.  相似文献   

2.
Sortase A (SrtA) anchors surface proteins to the cell wall and aids biofilm formation during infection, which functions as a key virulence factor of important Gram-positive pathogens, such as Staphylococcus aureus. At present researchers need a way in which to validate whether or not SrtA is a druggable target alternative to the conventional antibiotic targets in the mechanism. In this study, we performed a high-throughput screening and identified a new class of potential inhibitors of S. aureus SrtA, which are derived from natural products and contain the quinone skeleton. Compound 283 functions as an irreversible inhibitor that covalently alkylates the active site Cys184 of SrtA. NMR analysis confirms the direct interaction of the small-molecule inhibitor towards SrtA protein. The anchoring of protein A (SpA) to the cell wall and the biofilm formation are significantly attenuated when the S. aureus Newman strain is cultured in the presence of inhibitor. Our study indicates that compound 283 could be a potential hit for the development of new anti-virulence agents against S. aureus infections by covalently targeting SrtA.  相似文献   

3.
Tetralene and indene compounds have shown inhibitory activity against human pathogen, Mycobacterium tuberculosis. Their potential use as antistaphylococcal agent against drug-resistant Staphylococcus aureus has not been explored so far. We determined in vitro antistaphylococcal activity and mechanism of action of these compounds as sortase A inhibitors through in silico analysis followed by biological assays. Tetralene and indene series were tested against S. aureus strains MTCC96, MRSA, and VA30. Three compounds showed significant reduction in MIC in both wild-type and drug-resistant S. aureus strains. In silico absorption, distribution, metabolism, excretion, and toxicity analysis of identified leads and cytotoxicity testing with colorimetric method using Vero and WRL-68 cell lines showed no significant cytotoxic effects. Molecular docking of these molecules with sortase A (PDB: 2KID) showed H-bond interaction with functional site residue Arg197 of sortase A. Sortase A inhibition assay was developed by expressing SrtA?N from S. aureus strain MTCC96. Tetralene and indene compounds were found to have sortase A inhibitory potential. S. aureus strain MTCC96 treated with these compounds showed surface-sorting inhibition of fibronectin-binding protein and reduction in adherence to host extracellular matrix protein, fibronectin. 1-Chloro, 2-formyl, 6-methoxy, 1-tetralene (Tet-5), 1,5-dichloro, 2-formyl, 1-indene (Tet-20) and 1-chloro, 2-formyl, 5,6-methylenedioxy, and 1-indene (Tet-21) exhibited antistaphylococcal activity along with sortase A inhibition. The results also indicate the possible role of these leads in other reactions essential for cell viability.  相似文献   

4.
The present study demonstrates isolation and identification of methicillin resistance Staphylococcus aureus (MRSA) strains in the samples collected from burn patients. About 106 swab samples were collected from burn patients of >40% burn injury and were subjected to isolation using nutrient agar followed by screening using Me Re Sa selective medium agar. A total of 10 isolates with identity to S. aureus were obtained and further authenticated using Polymerase Chain Reaction and matrix assisted laser desorption/ionization time of flight mass spectrometry analysis. Presence of mec A gene and the peak pattern observations suggested seven of the 10 isolates are MRSA. Thus, the present study emphasizes the process of identification of MRSA using two different bio-analytical techniques, which authenticate the presence of MRSA.  相似文献   

5.
New compounds able to counteract staphylococcal biofilm formation are needed. In this study we investigate the mechanism of action of pyrrolomycins, whose potential as antimicrobial agents has been demonstrated. We performed a new efficient and easy method to use microwave organic synthesis suitable for obtaining pyrrolomycins in good yields and in suitable amount for their in vitro in-depth investigation. We evaluate the inhibitory activity towards Sortase A (SrtA), a transpeptidase responsible for covalent anchoring in Gram-positive peptidoglycan of many surface proteins involved in adhesion and in biofilm formation. All compounds show a good inhibitory activity toward SrtA, having IC50 values ranging from 130 to 300?µM comparable to berberine hydrochloride. Of note compound 1d shows a good affinity in docking experiment to SrtA and exhibits the highest capability to interfere with biofilm formation of S. aureus showing an IC50 of 3.4?nM. This compound is also effective in altering S. aureus murein hydrolase activity that is known to be responsible for degradation, turnover, and maturation of bacterial peptidoglycan and involved in the initial stages of S. aureus biofilm formation.  相似文献   

6.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

7.
Tyrosine kinase inhibitors (TKI)-resistant mutation in epidermal growth factor receptor’s (EGFR) kinase domain is an important anomaly to look into. Studying the mutations at atomic level using molecular dynamics simulations gave us an insight into the architectural changes happening at the microscopic level. The knowledge was used to design new TKI whose function is devoid of the affect of the mutations in kinase domain. Traditional Chinese medicinal library was used for structure-based drug designing, where virtual screening was followed by ADME/Tox analysis and the shortlisted compounds were docked into the kinase domain of EGFR and simulated there using atomic-level selection of the grid. The shortlisted compounds from molecular docking analysis were subjected to MM-PBSA calculations. The in silico data generated is giving a strong lead compound for further in vitro and in vivo analysis.  相似文献   

8.

Background

Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly increases its resistance to many conventional antibiotics and often results in chronic infection. It has an urgent need to design novel antibiotics against staphylococci infections, especially those can kill cells embedded in biofilm.

Results

In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S. epidermidis were discovered first using structure-based virtual screening (SBVS) from a small molecular lead-compound library, followed by experimental validation. Of the 76 candidates derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis, seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except for one, the compounds were found to bind to the YycG protein and to inhibit its auto-phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our study.

Conclusion

These novel inhibitors of YycG histidine kinase thus are of potential value as leads for developing new antibiotics against infecting staphylococci. The structure-based virtual screening (SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs, since it is more rapid and efficacious than traditional screening technology.  相似文献   

9.
The antimicrobial activity of two serine derived gemini cationic surfactants, amide (12Ser)2CON12 and ester (12Ser)2COO12, was tested using sensitive, E. coli ATCC 25922 and S. aureus ATCC 6538, and resistant, E. coli CTX M2, E. coli TEM CTX M9 and S. aureus ATCC 6538 and S. aureus MRSA ATCC 43300 Gram-positive and Gram-negative bacteria strains. Very low MIC values (5 μM) were found for the two resistant strains E.coli TEM CTX M9 and S. aureus MRSA ATCC 43300, in the case of the amide derivative, and for S. aureus MRSA ATCC 43300, in the case of the ester derivative. The interaction of the serine amphiphiles with lipid-model membranes (DPPG and DPPC) was investigated using Langmuir monolayers. A more pronounced effect on the DPPG than on the DPPC monolayer was observed. The effect induced by the surfactants on bacteria membrane was explored by Atomic Force Microscopy. A clear disruption of the bacteria membrane was observed for E. coli TEM CTX M9 upon treatment with (12ser)2CON12, whereas for the S. aureus MRSA few observable changes in cell morphology were found after treatment with either of the two surfactants. The cytotoxicity of the two compounds was assessed by hemolysis assay on human red blood cells (RBC). The compounds were shown to be non-cytotoxic up to 10 μM. Overall, the results reveal a promising potential, in particular of the amide derivative, as antimicrobial agent for two strains of antibiotic resistant bacteria.  相似文献   

10.
Mycobacterium tuberculosis pantothenate synthetase is a potential anti-tuberculosis target, and a high-throughput screening system was previously developed to identify its inhibitors. Using a similar system, we screened a small library of compounds and identified actinomycin D (ActD) as a weak inhibitor of pantothenate synthetase. A new method was established to discover more effective inhibitors by determining the molecular mechanism of ActD inhibition followed by structure-based virtual screening. The molecular interaction of inhibition was determined by circular dichroism and tryptophan fluorescence quenching. The structure-based search and virtual screening were performed using the Molecular Operating Environment (MOE) program and SYBYL 7.5, respectively. Two inhibitors were identified with an IC50 for pantothenate synthetase that was at least ten times better than that of ActD.  相似文献   

11.
Kinases and phosphatases are involved in many essential processes in Plasmodium lifecycle. Among the identified 67 Plasmodium falciparum phosphatases, Phosphatase of Regenerating Liver (PRL) family protein homolog, PfPRL, is an essential parasite tyrosine phosphatase. PfPRL is shown to be prenylated, secreted, and involved in the host invasion process. In the present study, a structure-based high throughput in silico screening of PfPRL binders, using ChEMBL-NTD compounds lead to the identification of nine compounds based on binding energy, Lipinski rule of five, and QED score. The most of the shortlisted compounds are known to inhibit parasite growth at a concentration (EC50) ≤2 μm in in vitro P. falciparum culture assays. MD simulations were carried out on the shortlisted nine potential enzyme–inhibitor complexes to analyze specificity, stability, and to calculate the free binding energies of the complexes. The study identifies PfPRL as one of the potential drug targets for selected ChEMBL-NTD compounds that may be exploited as a scaffold to develop novel antimalarials.  相似文献   

12.
The polo-like kinase 1 (Plk1) is a critical regulator of cell division that is overexpressed in many types of tumors. Thus, a strategy in the treatment of cancer has been to target the kinase activity (ATPase domain) or substrate-binding domain (Polo-box Domain, PBD) of Plk1. However, only few synthetic small molecules have been identified that target the Plk1-PBD. Here, we have applied an integrative approach that combines pharmacophore modeling, molecular docking, virtual screening, and in vitro testing to discover novel Plk1-PBD inhibitors. Nine Plk1-PBD crystal structures were used to generate structure-based hypotheses. A common pharmacophore model (Hypo1) composed of five chemical features was selected from the 9 structure-based hypotheses and used for virtual screening of a drug-like database consisting of 159,757 compounds to identify novel Plk1-PBD inhibitors. The virtual screening technique revealed 9,327 compounds with a maximum fit value of 3 or greater, which were selected and subjected to molecular docking analyses. This approach yielded 93 compounds that made good interactions with critical residues within the Plk1-PBD active site. The testing of these 93 compounds in vitro for their ability to inhibit the Plk1-PBD, showed that many of these compounds had Plk1-PBD inhibitory activity and that compound Chemistry_28272 was the most potent Plk1-PBD inhibitor. Thus Chemistry_28272 and the other top compounds are novel Plk1-PBD inhibitors and could be used for the development of cancer therapeutics.  相似文献   

13.
The peptidoglycan biosynthetic pathway provides an array of potential targets for antibacterial drug design, attractive especially with respect to selective toxicity. Within this pathway, the members of the Mur ligase family are considered as promising emerging targets for novel antibacterial drug design. Based on the available MurD crystal structures co-crystallised with N-sulfonyl glutamic acid inhibitors, a virtual screening campaign was performed, combining three-dimensional structure-based pharmacophores and molecular docking calculations. A novel class of glutamic acid surrogates—benzene 1,3-dicarboxylic acid derivatives—were identified and compounds 14 and 16 found to possess dual MurD and MurE inhibitory activity.  相似文献   

14.
Type or The emergence of resistance to antibiotic has developed a complicated situation in the treatment of bacterial infections. Considering the antimicrobial resistance phenomenon as one of the greatest challenge of medicinal chemists for search of better anti-bacterial agents, which have potential narrow spectrum activity with low development of resistance potential and low toxicity to host. Cross-linking of peptidoglycan is a key step catalyze by Penicillin binding protein (PBP) to maintain integrity of cell wall in bacterial cell. However, these Penicillin binding protein (PBP) has developed resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to acquisition of additional PBP2a. Various Quinazolinone analogues are reported in literature as potential anti-bacterial agents against MRSA. In present study new quinazolinone analogues has been designed, guided by molecular docking, In-silico and MM-GBSA study. Newly designed molecules have been synthesized by medicinal chemistry route and their characterization was done by using IR, NMR, & HR-MS techniques. Biological evaluation of synthesized compounds has been done on wild type Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) and resistant MRSA bacterial strains using Streptomycin, Kanamycin and Linezolid as standard drugs respectively. The in vitro evaluation results have shown that compound 5f is active with MIC value 15.625 μg/mL against S. aureus and with MIC value 31.25 μg/mL against MRSA.  相似文献   

15.
A series of novel biaryloxazolidinone derivatives containing amide and acrylamide structure were designed, synthesized and evaluated for their antibacterial activity. Most compounds generally exhibited potent antibacterial activity with MIC values of 1 μg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as positive controls. Compound 17 exhibited good antibacterial activity with MIC values of 0.5 μg/mL against S. aureus, MRSA, MSSA and VRE and 0.25 μg/mL against LREF. The results indicated that compound 17 might serve as a potential hit-compound for further investigation.  相似文献   

16.
Privileged structure-based libraries have been shown to provide high affinity lead compounds for a variety of important biological targets. The present study describes the synthesis and screening of a 2-aminothiazole based compound library to determine their utility as antimicrobials, focusing on MRSA. Several of the compounds in this series demonstrated improved antimicrobial activity as compared to ceftriaxone (CTX), a β-lactam antibiotic. The most potent compound (21) had MICs in the range of 2–4 μg/ml across a panel of Staphylococcus aureus strains. In addition, trifluoromethoxy substituted aminothiazoles and aminobenzothiazoles were found to be potent antimicrobials with MICs of 2–16 μg/ml.  相似文献   

17.
18.
Three novel series of 5-aryloxypyrazole derivatives have been synthesized and tested for their antibacterial activity. The majority of the synthesized compounds showed potent inhibitory activity against Gram-positive bacteria Staphylococcus aureus 4220, especially against the strains of multidrug-resistant clinical isolates (MRSA3167/3506 and QRSA3505/3519). Among which compounds IIIb, IIIg and IIIm showed the most potent levels of activity (MIC = 1 μg/mL) against the multidrug-resistant strains. And cytotoxic activity assay showed that the compounds tested did not affect cell viability on the Human cervical (HeLa) cells at their MICs. The current study therefore suggests that 5-aryloxypyrazoles bearing a rhodanine-3-aromatic acid moiety are promising scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

19.
Gram-positive bacteria are among the most common human pathogens associated with clinical infections which range from mild skin infections to sepsis. Resistance towards existing class of drugs by Gram-positive bacteria including methicillin resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (MRSE) and vancomycin resistant enterococci (VRE) is a growing concern. There is an urgent need to discover new antibiotics which are active against resistant strains of Gram positive bacteria. We report herein a novel class of spiropyrimidinetrione oxazolidinone derivatives as novel antibacterial agents. Key step towards the synthesis of title compounds involved the use of tert-amino reaction with [1,5]-hydride shift leading to the new CC bond formation. Compound 30n has demonstrated potent antibacterial activity against a panel of Gram-positive microbial strains including MRSA, MRSE, and LNZ and vancomycin resistant strains of E. faecalis. Further, molecular docking studies suggest that 30n has binding mode similar to that of LNZ in 50S RNA ribosome.  相似文献   

20.
Methicillin resistant Staphylococcus aureus (MRSA) is among the major drug resistant bacteria that persist in both the community and clinical settings due to resistance to commonly used antimicrobials. This continues to fuel the need for novel compounds that are active against this organism. For this purpose we have targeted the type IIA bacterial topoisomerase, DNA gyrase, an essential enzyme involved in bacterial replication, through the ATP-dependent supercoiling of DNA. The virtual screening tool Shape Signatures was applied to screen a large database for agents with shape similar to Novobiocin, a known gyrase B inhibitor. The binding energetics of the top hits from this initial screen were further validated by molecular docking. Compounds with the highest score on available crystal structure of homologous DNA gyrase from Thermus thermophilus were selected. From this initial set of compounds, several rhodanine-substituted derivatives had the highest antimicrobial activity against S. aureus, as determined by minimal inhibitory concentration assays, with Novobiocin as the positive control. Further activity validation of the rhodanine compounds through biochemical assays confirmed their inhibition of both the supercoiling and the ATPase activity of DNA gyrase. Subsequent docking and molecular dynamics on the crystal structure of DNA gyrase from S. aureus when it became available, provides further rationalization of the observed biochemical activity and understanding of the receptor–ligand interactions. A regression model for MIC prediction against S. aureus is generated based on the current molecules studied as well as other rhodanines derivatives found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号