首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thompson CR  Kay RR 《Molecular cell》2000,6(6):1509-1514
We have constructed a mutant blocked in the biosynthesis of DIF-1, a chlorinated signal molecule proposed to induce differentiation of both major prestalk cell types formed during Dictyostelium development. Surprisingly, the mutant still forms slugs retaining one prestalk cell type, the pstA cells, and can form mature stalk cells. However, the other major prestalk cell type, the pstO cells, is missing. Normal pstO cell differentiation and their patterning in the slug are restored by development on a uniform concentration of DIF-1. We conclude that pstO and pstA cells are in fact induced by separate signals and that DIF-1 is the pstO inducer. Positional information, in the form of DIF-1 gradients, is evidently not required for pstO cell induction.  相似文献   

2.
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 'salt and pepper' patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA(-) pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA(-) pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA(-) background rescues pstO cell localisation. hfnA(-) cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on 'salt and pepper' differentiation and sorting out.  相似文献   

3.
4.
Selective induction of stalk-cell-specific proteins in Dictyostelium   总被引:6,自引:0,他引:6  
We compared the proteins synthesized and accumulated by Dictyostelium discoideum amoebae in response to the morphogenetic factor termed differentiation-inducing factor (DIF) to assess the proposed ability of DIF to regulate the choice of differentiation pathway. When amoebae of a mutant strain with low endogenous DIF levels were given DIF, they dramatically increased the expression of 21 of 23 proteins preferentially found in stalk cells, but drastically repressed 4 major spore-specific proteins. Most of the induced proteins were also expressed in amoebae of a developmentally competent strain developing at low cell densities and exposed to DIF, low extracellular pH, or the proton pump inhibitor diethylstilbestrol; this suggests that an intracellular acidification may be a key part of the mechanism of DIF action. We conclude from the similar morphology and extensive homology of proteins of DIF-induced and stalk cells that most stalk-pathway functions are DIF dependent.  相似文献   

5.
6.
7.
8.
DIF is an endogenous extracellular signal that may control differentiation of D. discoideum cells. It is a dialyzable, lipid-like factor that induces stalk cell formation among isolated amebae incubated in vitro with cAMP. To examine the consequences of DIF deprivation, we have isolated several mutant strains that are impaired in DIF accumulation, and whose inability to make stalk cells in vitro and during normal development on agar can be corrected by the addition of exogenous DIF. Little DIF is made by the mutants, and morphological development on agar stops after the cells have aggregated, but before a slug forms. In these DIF-deprived conditions, prespore cells can differentiate, but prestalk cells cannot.  相似文献   

9.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

10.
Previous work has shown that cells developing at high density release a low-molecular-weight factor that can induce isolated Dictyostelium discoideum amoebae of strain V12M2 to differentiate into stalk cells in the presence of cyclic AMP. We now show that this differentiation-inducing factor, called DIF, can be extracted from cells during normal development and that its production is strongly developmentally regulated. DIF is not detectable in vegetative cells but rises dramatically after aggregation to reach a peak during slug migration. DIF levels are very low in two mutants defective in aggregation. The postaggregative synthesis of DIF is stimulated by the addition of extracellular cyclic AMP. We propose that DIF is a morphogen controlling prestalk cell differentiation.  相似文献   

11.
Prestalk cell differentiation in Dictyostelium is induced by DIF and two DIF-induced genes, ecmA and ecmB, have revealed the existence of multiple prestalk and stalk cell sub-types. These different sub-types are defined by the pattern of expression of subfragments derived from the ecmA and ecmB promoters. These markers have been utilised in three ways; for fate mapping in vivo, to investigate the molecular mechanisms underlying DIF signalling and to explore the relative requirement for DIF and other signalling molecules for prestalk and stalk cell differentiation in vitro. The heterogeneity of the prestalk and stalk populations seems to be reflected in differences in the cell signalling pathways that they utilise.  相似文献   

12.
13.
14.
The importance of signal transduction pathways in regulating developmental processes in a number of organisms has become evident in recent years. This is exceptionally clear for Dictyostelium, which uses soluble factors to regulate morphogenesis and cellular differentiation. It is now known that many of these processes are controlled by signal transduction pathways mediated by cyclic AMP through cell surface receptors coupled to G proteins, and that others are mediated by the morphogen DIF.  相似文献   

15.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

16.
The importance of signal transduction pathways in regulating developmental processes in a number of organisms has become evident in recent years. This is exceptionally clear for Dictyostelium, which uses soluble factors to regulate morphogenesis and cellular differentiation. It is now known that many of these processes are controlled by signal transduction pathways mediated by cyclic AMP through cell surface receptors coupled to G proteins, and that others are mediated by the morphogen DIF.  相似文献   

17.
The effects of cAMP pulses on the capacity of 15 aggregateless mutants to differentiate and construct fruiting bodies are compared to those obtained when mutant cells are starved with wild-type amoebae. Mutant strains are classified into three main groups depending upon the degree to which their phenotypic defects can be corrected. These data extend studies published earlier [Darmon, M., Brachet, P., and Pereira da Silva, L. (1975). Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA72, 3163–3166; Pereira da Silva, L., Darmon, M., Brachet, P., Klein, C., and Barrand, P. (1975). Induction of cell differentiation by the chemotactic signal in Dictyostelium discoideum. In “Proceedings of the Tenth FEBS Meeting,” pp. 269–276]. (1) Only one mutant was unresponsive both to cAMP pulses and to the presence of wild-type amoebae and did not display any of the properties of differentiated cells. (2) Following treatment with cAMP pulses, 11 mutants developed certain properties of aggregation-competent amoebae. They increased their levels of cellular phosphodiesterase, showed an enhanced chemotactic sensitivity to cAMP, and established specific cell contacts. None of these amoebae could differentiate further. They did co-aggregate to some extent with wild-type cells, but failed to differentiate into spores. Rather, mutant cells were excluded from the pseudoplasmodium during the process of morphogenesis of the fruiting body. (3) In contrast, the aggregateless phenotype of three mutants was fully corrected by both cAMP pulses and the presence of wild-type cells. These findings are discussed on the basis of a relationship between the chemotactic signal and cell differentiation.  相似文献   

18.
We describe a Dictyostelium STAT, Dd-STATc, which regulates the speed of early development and the timing of terminal differentiation. Dd-STATc also functions as a repressor, which directs graded expression of the ecmA gene in different prestalk cell populations. Developing Dictyostelium cells produce a chlorinated hexaphenone, DIF, which directs prestalk cell differentiation. Dd-STATc is tyrosine phosphorylated, dimerizes, and translocates to the nucleus when cells are exposed to DIF. Surprisingly, however, SH2 domain-phosphotyrosine interaction is not necessary for the DIF-induced nuclear translocation of Dd-STATc. In this respect, Dd-STATc activation resembles several recently described, noncanonical mammalian STAT signaling processes. We show instead that DIF mediates nuclear translocation via sequences located in the divergent, N-terminal half of the Dd-STATc molecule.  相似文献   

19.
Macroautophagy is a mechanism employed by eukaryotic cells to recycle non-essential cellular components during starvation, differentiation, and development. Two conjugation reactions related to ubiquitination are essential for autophagy: Apg12p conjugation to Apg5p, and Apg8p conjugation to the lipid phosphatidylethanolamine. These reactions require the action of the E1-like enzyme, Apg7p, and the E2-like enzymes, Apg3p and Apg10p. In Dictyostelium, development is induced by starvation, conditions under which autophagy is required for survival in yeast and plants. We have identified Dictyostelium homologues of 10 budding yeast autophagy genes. We have generated mutations in apg5 and apg7 that produce defects typically associated with an abrogation of autophagy. Mutants are not grossly affected in growth, but survival during nitrogen starvation is severely reduced. Starved mutant cells show little turnover of cellular constituents by electron microscopy, whereas wild-type cells show significant cytoplasmic degradation and reduced organelle number. Bulk protein degradation during starvation-induced development is reduced in the autophagy mutants. Development is aberrant; the autophagy mutants do not aggregate in plaques on bacterial lawns, but they do proceed further in development on nitrocellulose filters, forming defective fruiting bodies. The autophagy mutations are cell autonomous, because wild-type cells in a chimaera do not rescue development of the autophagy mutants. We have complemented the mutant phenotypes by expression of the cognate gene fused to green fluorescent protein. A green fluorescent protein fusion of the autophagosome marker Apg8 mislocalizes in the two autophagy mutants. We show that the Apg5-Apg12 conjugation system is conserved in Dictyostelium.  相似文献   

20.
During differentiation of Dictyostelium discoideum, cAMP functions as a diffusible, extracellular signal to direct chemotaxis and regulate developmental gene expression. The availability of signal-transduction mutants of Dictyostelium now makes it feasible to pursue a genetic analysis of cAMP signaling. The synag 7 mutant is defective in receptor-mediated adenylate cyclase stimulation and cannot relay a cAMP signal. To further characterize this mutant, mRNA levels of several cAMP-regulated genes were measured during development. cAMP-regulated gene expression was found to be dramatically altered in synag 7:several different genes which require cAMP for expression in wild-type cells were induced in synag 7 in the absence of cAMP. In addition, the gene-encoding discoidin I, which is normally expressed in starved cells and repressed by cAMP, is expressed at very low levels in starved synag 7 cells, possibly due to precocious repression. These results suggest that a pleiotropic regulator of cAMP-regulated gene expression is uncoupled from its normal controls during development in synag 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号