首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The antihypercholesterolaemic drug ethyl alpha-p-chlorophenoxyisobutyrate when fed to the rat orally or mixed with the diet increased the content of mitochondria in the liver by 50-100%. Other subcellular fractions did not show any significant change. 2. In oxidative activity, respiratory control and phosphorylating ability no significant difference was observed between the mitochondria isolated from the livers of the drug-treated rats and those from normal animals. 3. In agreement with earlier reports, administration of the drug depressed the concentration of serum cholesterol and increased liver weight and the liver content of ubiquinone. However, the increase of ubiquinone was greater in the nuclear than in the mitochondrial protein.  相似文献   

2.
1. Feeding of alpha-p-chlorophenoxyisobutyrate (CPIB) to rats increased ubiquinone concentration in the liver but not in other tissues. The increase was progressive with the time of feeding and related to the concentration of CPIB in the diet. 2. Incorporation of [1-(14)C]acetate, but not of [2-(14)C]mevalonate, into sterols in the liver in vivo or by liver slices in vitro was decreased on feeding the rats with CPIB. However, incorporation of mevalonate into ubiquinone increased. 3. CPIB, when added in low concentrations to liver slices, had no effect on isoprene synthesis from acetate; higher concentrations, however, were inhibitory. 4. No activation of ubiquinone synthesis from mevalonate was observed when CPIB was added to the liver slices synthesizing ubiquinone. 5. The increase in ubiquinone in CPIB-fed animals appears to be due to increased synthesis in the initial stages and to decreased catabolism in the later stages. 6. An inverse relationship was found between the concentration of ubiquinone in the liver and the serum sterol concentration in CPIB-fed rats.  相似文献   

3.
Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.  相似文献   

4.
The effects of hexachlorobenzene treatment and simultaneous iron-overload on the iron and porphyrin content of rat liver and rat liver mitochondria have been examined. In order to assess damages to the mitochondrial membrane occuring with these treatments, the content of malondialdehyde and selected functional properties of mitochondria were compared with those from control animals. Prolonged intake of hexachlorobenzene (8 weeks) resulted in a striking increased level of porphyrins together with a moderate increase in iron concentration. Simultaneous administration of hexachlorobenzene and iron-dextran caused the porphyrin level to reach 25% of the amount induced by hexachlorobenzene alone. The iron concentrations in liver as well as in liver mitochondria are also decreased under these conditions, as compared to the effect of iron-dextran. In contrast, the effects of hexachlorobenzene combined with iron-dextran on mitochondrial oxidative phosphorylation and malondialdehyde content are greater than those of either hexachlorobenzene or iron-dextran. These data suggest that porphyrin accumulation per se causes little deleterious effect and that both agents administered together act synergistically in causing damage to the mitochondrial membrane.  相似文献   

5.
The effects of 4-weeks ethanol application (20% ethanol, w/w, 2 g X kg-1 on the alcohol oxidizing systems and gluconeogenic enzyme activities of the liver in guinea pigs kept in the cold (+4 degrees C) and at room temperature (+20 degrees C) were studied. The controls were guinea pigs reared at room temperature or in a cold environment without ethanol. The study showed a significant increase (1.5-fold) in liver microsomal cytochrome P-450 after chronic ethanol treatment at room temperature, but not in a cold environment. Microsomal NADPH oxidase activity did not significantly change in any group. Ethanol treatment in a cold environment resulted in a significant increase in liver mitochondrial cytochromes, aa3 and c+c1, and at room temperature in cyt aa3. The activities of total liver homogenate alcohol dehydrogenase or catalase did not change after chronic ethanol treatment. The activity of liver fructose-1.6-diphosphatase showed a significant ethanol induced decrease at room temperature, an effect not observed in the cold environment. Ethanol increased glucose-6-phosphatase activity in the cold, but not at room temperature. In conclusion, the stimulation of liver mitochondrial cytochromes and microsomal cyt P-450 as a consequence of chronic ethanol treatment indicated an increased oxidation capacity for ethanol. The stimulation of glucose-6-phosphatase in a cold environment might be responsible for increasing glucose for heat production after chronic ethanol treatment in cold adapted animals.  相似文献   

6.
1. Clofenapate (methyl 2-[4-(p-chlorophenyl)phenoxy]-2-methylpropionate) fed to the rat in the diet increased the content of mitochondrial protein in the liver by 50-60%. In this respect it resembled the related compound clofibrate (ethyl alpha-p-chlorophenoxyisobutyrate), which is widely used as an antihypercholesterolaemic drug. 2. Both compounds when fed to the rat enhanced the activity of alpha-glycerol phosphate dehydrogenase in the liver mitochondria manyfold, but were without effect on the enzyme in the soluble fraction. 3. On the other hand, the catalase activity in the supernatant fraction increased twofold after administration of the drugs. The mitochondrial catalase activity showed a consistent decrease. 4. It was unlikely that under the influence of the drug the increase in catalase activity took place in the mitochondrial particles and was leached into the cytosol during isolation. 5. The increase in catalase activity in the cytosol under the influence of the drug is best explained on the assumption that peroxisomes which contain this enzyme, and which are known to increase on administration of the drug, were broken during the process of cellular fractionation and released the enzyme into the cytosol. 6. All the above effects shown by both drugs were fully reversed when drugs were withdrawn from the diet. 7. Clofenapate was effective in bringing about the above changes when administered to the animal at one-hundredth the concentration of clofibrate.  相似文献   

7.
Metabolism of ubiquinone in relation to thyroxine status   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Under conditions of thyrotoxicosis induced by feeding rats with iodinated casein, ubiquinone concentration was found to increase in the liver by increased synthesis and by partly decreased catabolism leading to its accumulation. The increased ubiquinone was found primarily in the mitochondrial and supernatant fractions. 2. Supplementing the diet with thyroxine, at less than toxic doses, also increased the synthesis and the concentration of ubiquinone in the liver. 3. In the condition of hypothyroidism obtained by feeding rats with thiouracil the concentration and the synthesis of ubiquinone in the liver showed a small decrease. 4. Synthesis of ubiquinone in liver slices was partially inhibited by addition of thyroxine in vitro. Therefore the activation effect on ubiquinone synthesis of excess of thyroxine in the intact animals appears to be by an indirect mechanism.  相似文献   

8.
1. Oxygen-consumption rates owing to oxidation of octanoate or octanoylcarnitine by isolated mitochondria from livers of fed, starved and glucagon-treated virgin or 12-day-lactating animals were measured under State-3 and State-4 conditions, in the presence or absence of l-malate and inhibitors of tricarboxylic acid-cycle activity (malonate and fluorocitrate). 2. Mitochondria from fed lactating animals had a slightly lower rate of octanoylcarnitine oxidation than did those of fed virgin animals, whereas the rates of octanoate oxidation were unaffected. 3. Starvation of virgin animals for 24h or 48h resulted in a large (70–100%) increase in mitochondrial octanoylcarnitine oxidation; rates of octanoate oxidation were either unaffected (24 and 48h starvation in the absence of malonate and fluorocitrate) or diminished by 30% (48h starvation in the presence of inhibitors). In lactating animals, 24h starvation resulted in a smaller increase in the rate of octanoylcarnitine oxidation than that obtained for mitochondria from virgin rats. 4. Glucagon treatment (by intra-abdominal injection) of fed virgin and lactating rats increased the rate of mitochondrial oxidation of both octanoylcarnitine and octanoate. Injection of glucagon into 48h-starved virgin rats did not increase further the already elevated rate of octanoylcarnitine oxidation, but reversed the inhibition of octanoate β-oxidation observed for these mitochondria in the presence of malonate and fluorocitrate. 5. It is suggested that glucagon activates octanoylcarnitine oxidation by increasing the activity of the carnitine/acylcarnitine transport system [Parvin & Pande (1979) J. Biol. Chem. 254, 5423–5429] and that the increase in octanoate oxidation by mitochondria from glucagon-treated animals is caused by the increased rate of ATP synthesis in these mitochondria. 6. The results are discussed in relation to the increased capacity of the liver to oxidize long-chain fatty acids and carnitine esters of medium-chain fatty acids under conditions characterized by increased ketogenesis.  相似文献   

9.
In cold exposed rats, it is known that vitamin E induces an increase in the respiration of the whole mitochondrial population isolated from liver. To obtain information on the effects of cold exposure and vitamin E treatment on the dynamics of mitochondrial population, we determined characteristics of rat liver mitochondrial fractions, resolved at 1,000 (M1), 3,000 (M3), and 10,000 g (M10). We found that cold exposure increased the liver content of total mitochondrial proteins irrespective of vitamin E treatment. Conversely, protein distribution among the mitochondrial subpopulations was differentially affected by cold and antioxidant integration. In a cold environment, the M1 fraction, characterized by the highest O2 consumption and H2O2 production rates, underwent a remarkable protein content reduction, which was attenuated by vitamin E. These changes were dependent on the opposite effects of the two treatments on mitochondrial oxidative damage and susceptibility to swelling. The proteins of the other fractions, in which the above effects were lower, underwent smaller (M3) or no change (M10) in the treatment groups. The cold also led to an increase in O2 consumption of the M1 fraction which was accentuated by vitamin E treatment. This phenomenon and the vitamin-induced recovery of the M1 proteins supply an explanation of the previously reported increase in the respiration of the whole mitochondrial population induced by vitamin E in the liver from cold exposed rats.  相似文献   

10.
The age specificity of the regulation by thyroid hormones of 1,2-diacylglycerol production in rat liver has been studied. It was found that L-thyroxine-stimulation of the 3-month old rats liver cells resulted in a rapid rise in 1,2-diacylglycerol concentration in hepatocytes and simultaneous degradation of phospholipids. The endogenous phosphatidylcholine and phosphatidylethanolamine are the sources of 1,2-diacylglycerol in a liver. Under the action of hormone liver cells of young rats may product 1,2-diacylglycerol from exogenous 1-acyl, 2-[14C]arachidonyl-phosphatidylethanolamine. Thyroxine had no effect on de novo 1,2-diacylglycerols formation and their release from triacylglycerol. In liver cells of elder rats, 1,2-diacylglycerol and individual phospholipids content are unaffected by hormones.  相似文献   

11.
The polyhalogenated aromatic hydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ubiquitously distributed environmental pollutant which can induce a broad spectrum of toxic responses in animals, including birds. In this study, we investigated the impact of 0 or 20 ng TCDD injections into the yolk of chicken eggs before start of development, on liver and ovarian protein expression in hatchlings using fluorescent two-dimensional difference gel electrophoresis (2-D-DIGE) under a pH range of 4-7, combined with MS. Despite considerable interindividual variability, exposure to TCDD prior to the start of embryonic development resulted in significant changes in expression of a small set of proteins. Expression of fibrinogen gamma chain precursor in the liver and 60 kDa heat shock protein in the ovary were significantly higher as a result of the very early exposure to TCDD. NADH ubiquinone oxidoreductase (42 kDa subunit) and regucalcin expression was decreased by early TCDD treatment in the liver and ovary, respectively. These proteins could not be directly linked with drug metabolism per se but are involved in blood clotting, oxidative stress, electron transport, and calcium regulation. It remains to be elucidated how these changes in the hatchling might be linked to the observed long-term consequences during posthatch life of the chicken.  相似文献   

12.
The synthesis and phospholipid content in the liver, intestine and spleen in normal and irradiated rats administered ubiquinone-9 were studied with the use of 3H-serine. Ubiquinone markedly activated decarboxylation of phosphatidylserine and suppressed transformation of phosphatidylethanolamine to phosphatidylcholine in rat liver and spleen. The effect was also observed in the organs of irradiated animals. In rat intestine, administration of ubiquinone normalized a sharp gamma-irradiation-induced inhibition of transformation of phosphatidylcholine from phosphatidylethanolamine. The catabolism of phospholipids under the action of ubiquinone and radiation was inhibited in the liver and, on the contrary, was activated in radiosensitive organs.  相似文献   

13.
Effect of exercise training on tissue vitamin E and ubiquinone content   总被引:2,自引:0,他引:2  
Endurance exercise training led to an adaptive increase in the ubiquinone content and cytochrome c reductase activity of red quadriceps and soleus muscles and adipose tissues, but not of cardiac or white quadriceps muscle. These findings are consistent with the well-known positive adaptation of skeletal muscle mitochondria to endurance training. However, there was no concomitant increase in the vitamin E content of tissues, which showed an increase in mitochondrial content. Since ubiquinone is located in the mitochondrial inner membrane and the major pool of vitamin E is also associated with mitochondrial membranes, the results suggest that training causes a substantial decrease in vitamin E concentration in the proliferating muscle mitochondrial membranes, thus depleting muscle mitochondria of their major lipid antioxidant. Since vitamin E is the major cellular, lipid-soluble, chain-breaking antioxidant, these findings indicate increased free radical reactions in the tissues of exercising animals.  相似文献   

14.
Previous studies have shown that T3 treatment and cold exposure induce similar biochemical changes predisposing rat liver to oxidative stress. This suggests that the liver oxidative damage observed in experimental and functional hyperthyroidism is mediated by thyroid hormone. To support this hypothesis we investigated whether middle-term cold exposure (2 and 10 days), like T3 treatment, also increases H2O2 release by liver mitochondria. We found that the rate of H2O2 release increased only during State 4 respiration, but faster flow of reactive oxygen species (ROS) from mitochondria to the cytosolic compartment was ensured by the concomitant increase in tissue mitochondrial proteins. Cold exposure also increased the capacity of mitochondria to remove H2O2. This indicates that cold causes accelerated H2O2 production, which might depend on enhanced autoxidizable carrier content and should lead to increased mitochondrial damage. Accordingly, mitochondrial levels of hydroperoxides and protein-bound carbonyls were higher after cold exposure. Levels of low-molecular weight antioxidants were not related to the extent of oxidative damage, but susceptibility to both in vitro oxidative challenge and Ca2+-induced swelling increased in mitochondria from cold exposed rats. The cold-induced changes in several parameters, including susceptibility to swelling, were time dependent, because they were apparent or greater after 10 days cold exposure. The cold-induced increase in swelling may be a feedback mechanism to limit tissue oxidative stress, purifying the mitochondrial population from ROS-overproducing mitochondria, and the time course for such change is consistent with the gradual development of cold adaptation.  相似文献   

15.
Abstract— Effects of the acute and chronic administration of ethanol have been investigated in mouse brain on the redox-state, citric acid cycle function, levels of adenine nucleotides and other metabolites. Cerebral oxidation of ethanol, activity of alcohol dehydrogenase and the permeability of brain and liver mitochondrial preparations after chronic ethanol administration have been also investigated. Acute or chronic administration of ethanol resulted in a small but significant increase in the reduced components of certain dehydrogenase-linked substrate pairs in brain. Pyrazole, an inhibitor of alcohol dehydrogenase, prevented the ethanol-induced changes in brain. 14CO2 production from several substrates was inhibited in brains from chronically ethanol-fed animals. Addition of pyrazole, however, prevented the ethanol-mediated inhibition of 14CO2 production. Chronic administration of ethanol resulted in decreased levels of ATP and creatine phosphate in the brain, and increased contents of ADP and AMP. The cerebral activities of alcohol dehydrogenase and succinic dehydrogenase, oxidation of ethanol, mitochondrial oxidation of a-glycerophosphate, and levels of NADH remained unaffected by the chronic administration of ethanol. In contrast to liver, where chronic administration of ethanol increased the contribution of 'substrate shuttles'resulting in increased oxidation of ethanol; in brain, the contribution of these 'shuttles'remained unaffected.  相似文献   

16.
1. A study of the mitochondrial phospholipids, phospholipid fatty acid patterns and enzyme activities was investigated in brown tissue (B.A.T.) from rats chronically exposed to cold and/or treated with thyroxine. 2. The total activities of the oxidative enzymes were increased after cold exposure, but not after thyroxine treatment. 3. Cold exposure increased the amount of phosphatidylethanolamine, phosphatidylcholine, cardiolipin and lysophospholipids, the effect being greatest for phosphatidylethanolamine. At the same time, there were marked alterations in the fatty acid composition of the mitochondrial phospholipids (decrease of palmitic, palmitoleic and oleic acids ; increase of stearic, linoleic and arachidonic acids). 4. All these cold-induced alterations were reversed by re-adaptation of the animal to a normal temperature range. 5. The alterations of the fatty acid composition of phospholipids could be explained by changes in the rate of individual fatty acid biosynthesis.  相似文献   

17.
Cold acclimation of Wistar rats for 2-4 weeks at about 3 degrees C resulted in an increased respiration rate and a reduced ADP/O ratio in liver mitochondria. With increasing duration of acclimation up to 10-12 weeks, these parameters returned to a normal level. The increase in the respiration rate and the decline of the mitochondrial ADP/O ratio were associated with a significant activation of the electroneutral release of Ca2+. When the animals were acclimated for 10-12 weeks the rate of Ca2+ release reduced to control values. The addition of 1 microM ruthenium red resulted in a decrease in the rates of mitochondrial respiration in control and cold-acclimated rats to approximately equal values and in a partial restoration of the ADP/O ratio in liver mitochondria of rats kept in the cold for 2-4 weeks. The respiratory activity of mitochondria isolated in the presence of 1 mM EGTA unaffected by ruthenium red.  相似文献   

18.
The mechanisms behind the hypotriglyceridemic effect of 1,10-bis(carboxymethylthio)decane (3-thiadicarboxylic acid) and tetradecylthioacetic acid and the development of fatty liver caused by 3-tetradecylthiopropionic acid (Aarsland et al. 1989. J. Lipid Res. 30: 1711-1718.) were studied in the rat. Repeated administration of S-substituted non-beta-oxidizable fatty acid analogues to normolipidemic rats resulted in a time-dependent decrease in plasma triglycerides, phospholipids, and free fatty acids. This was accompanied by an acute reduction in the liver content of triglycerides and an increase in the hepatic concentration of phospholipids. Mitochondrial fatty acid oxidation was stimulated, whereas lipogenesis was inhibited. The activity of phosphatidate phosphohydrolase decreased while the activity of CTP:phosphocholine cytidylyltransferase increased. These results suggest that the observed triglyceride-lowering effect was due to increased mitochondrial fatty acid oxidation accompanied by a reduction in the availability of the substrate i.e., free fatty acid, along with an enzymatic inhibition (phosphatidate phosphohydrolase). Administration of 3-tetradecylthiopropionic acid led to a drastic increase in the hepatic triglyceride content. Levels of plasma triglyceride phospholipid and free fatty acid also increased. Phosphatidate phosphohydrolase activity was stimulated whereas CTP:phosphocholine cytidylyltransferase was inhibited. Mitochondrial fatty acid oxidation was decreased. These data indicate that the development of fatty liver as an effect of 3-tetradecylpropionic acid is probably due to accelerated triglyceride biosynthesis, which is mediated by an increase in the availability of fatty acid along with stimulation of phosphatidate phosphohydrolase. The results of the present study speak strongly in favor of the hypothesis that phosphatidate phosphohydrolase is a major rate-limiting enzyme in triglyceride biosynthesis. Furthermore, they point out that the biosynthesis of triglycerides and phospholipids might be coordinately regulated. Such regulation is possibly mediated via phosphatidate phosphohydrolase and CTP:phosphocholine cytidylyltransferase. Whether the increase in hepatic phospholipids via increased CDP-pathway accounts for an increase of lipid components for proliferation of peroxisomes (3-thiadicarboxylic acid and tetradecylacetic acid) should be considered.  相似文献   

19.
It has been demonstrated that oxidative phosphorylation in liver mitochondria of the carps which were kept within a week at 5 and 25 degrees C remains unaffected by the addition of 0.5 micron thyroxin to the incubation medium. Addition of thyroxin (0.5 micron) to mitochondrial suspension prepared from the liver of carps acclimated within a week at 20 and especially 25 degrees C, resulted in uncoupling of respiration and phosphorylation. Daily injections of thyroxin within a week (2 mu kg per 1 g of body weight) to carps at 20 and 25 degrees C resulted in the increase of the rate of non-phosphorylating oxidation and the decrease of oxidative phosphorylation in liver mitochondria. The increase of temperature of water from 5 to 30 degrees C decreases triiodthyronine content of the blood serum in the carp.  相似文献   

20.
Marsupials lack brown adipose tissue, and therefore rely exclusively on other tissues for thermogenesis. To determine the magnitude of phenotypic plasticity of the liver in response to changing metabolic demand, gray short-tailed opossums (M. domestica) were exposed to thermoneutral (28 degrees C) or cold (9-12 degrees C) conditions continuously for 6 weeks. Half of each group was also endurance trained with a treadmill program during their respective temperature exposure. Mass specific summit metabolism (VO(2)summit) increased 11% following cold acclimation, though there was no significant main effect by training on VO(2)summit. To estimate the contribution of the liver to whole animal oxidative activity, we determined liver mass, mitochondrial volume density, and total mitochondrial volume. Relative liver mass was 48% greater in cold-acclimated animals, whereas training had no effect on liver mass. The stereological analysis of hepatocyte ultrastructure suggests the percentage of intracellular volumes remained unchanged in response to either aerobic challenge. Thus, following cold-acclimation, there is a 20% increase in the total mitochondrial volume of the liver. This increase could account for nearly half (44%) of the observed increase in whole animal VO(2)summit following cold exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号