首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.  相似文献   

2.
Epithelial cells in vivo form tight cell-cell associations that spatially separate distinct apical and basolateral domains. These domains provide discrete cellular processes essential for proper tissue and organ development. Using confocal imaging and selective plasma membrane domain activation, the type I and type II transforming growth factor-beta (TGFbeta) receptors were found to be localized specifically at the basolateral surfaces of polarized Madin-Darby canine kidney (MDCK) cells. Receptors concentrated predominantly at the lateral sites of cell-cell contact, adjacent to the gap junctional complex. Cytoplasmic domain truncations for each receptor resulted in the loss of specific lateral domain targeting and dispersion to both the apical and basal domains. Whereas receptors concentrate basolaterally in regions of direct cell-cell contact in nonpolarized MDCK cell monolayers, receptor staining was absent from areas of noncell contact. In contrast to the defined basolateral polarity observed for the TGFbeta receptor complex, TGFbeta ligand secretion was found to be from the apical surfaces. Confocal imaging of MDCK cells with an antibody to TGFbeta1 confirmed a predominant apical localization, with a stark absence at the basal membrane. These findings indicate that cell adhesion regulates the localization of TGFbeta receptors in polarized epithelial cultures and that the response to TGFbeta is dependent upon the spatial distribution and secretion of TGFbeta receptors and ligand, respectively.  相似文献   

3.
Membrane cofactor protein (MCP), a widely distributed complement regulatory protein, is expressed on the basolateral surface of polarized epithelial cells, and it is not endocytosed. The carboxyl-terminal tetrapeptide (FTSL) is required for polarized surface expression. The ability of this tetrapeptide to serve as an autonomous sorting signal has been analyzed by adding this sequence motif to the C terminus of an apical membrane protein, the influenza A virus hemagglutinin (HA). The recombinant protein HA-FTSL retained the apical localization of the parental HA protein. Substitution of the complete cytoplasmic tail of MCP for the cytoplasmic tail of HA resulted in the targeting of the chimeric protein (HA/MCP) to the basolateral surface suggesting that the carboxyl-terminal FTSL motif is a weak sorting signal that requires additional targeting information from the membrane-proximal part of the cytoplasmic tail of MCP for redirecting an apical protein to the basolateral membrane domain. In contrast to the native HA, the HA-FTSL protein was subject to endocytosis. The basolateral HA/MCP was also found to be internalized and thus differed from the basolateral MCP. This result suggests that the carboxyl-terminal FTSL motif serves as an internalization signal and that in native MCP sorting information outside the cytoplasmic tail counteracts this endocytosis signal. Substitution of a tyrosine for the phenylalanine dramatically increased the internalization with most of the HA-YTSL protein being present intracellularly. Our results are consistent with the view that the interplay of multiple sorting signals and the modification of a well known targeting signal (YTSL) by amino acid exchange (FTSL) determine the constitutive expression of MCP on the basolateral surface of polarized epithelial cells.  相似文献   

4.
Adenosine, acting through the A2b receptor, induces vectorial chloride and IL-6 secretion in intestinal epithelia and may play an important role in intestinal inflammation. We have previously shown that apical or basolateral adenosine receptor stimulation results in the recruitment of the A2b receptor to the plasma membrane. In this study, we examined domain specificity of recruitment and the role of soluble N-ethylmaleimide (NEM) attachment receptor (SNARE) proteins in the agonist-mediated recruitment of the A2b receptor to the membrane. The colonic epithelial cell line T84 was used because it only expresses the A2b-subtype adenosine receptor. Cell fractionation, biotinylation, and electron microscopic studies showed that the A2b receptor is intracellular at rest and that apical or basolateral adenosine stimulation resulted in the recruitment of the receptor to the apical membrane. Upon agonist stimulation, the A2b receptor is enriched in the vesicle fraction containing vesicle-associated membrane protein (VAMP)-2. Furthermore, in cells stimulated with apical or basolateral adenosine, we demonstrate a complex consisting of VAMP-2, soluble NEM-sensitive factor attachment protein (SNAP)-23, and A2b receptor that is coimmunoprecipitated in cells stimulated with adenosine within 5 min and is no longer detected within 15 min. Inhibition of trafficking with NEM or nocodazole inhibits cAMP synthesis induced by apical or basolateral adenosine by 98 and 90%, respectively. cAMP synthesis induced by foskolin was not affected, suggesting that generalized signaling is not affected under these conditions. Collectively, our data suggest that 1) the A2b receptor is intracellular at rest; 2) apical or basolateral agonist stimulation induces recruitment of the A2b receptor to the apical membrane; 3) the SNARE proteins, VAMP-2 and SNAP-23, participate in the recruitment of the A2b receptor; and 4) the SNARE-mediated recruitment of the A2b receptor may be required for its signaling.  相似文献   

5.
Plasma membrane Ca(2+)-ATPases (PMCAs) are involved in local Ca(2+) signaling and in the spatial control of Ca(2+) extrusion, but how different PMCA isoforms are targeted to specific membrane domains is unknown. In polarized MDCK epithelial cells, a green fluorescent protein-tagged PMCA4b construct was targeted to the basolateral membrane, whereas a green fluorescent protein-tagged PMCA2b construct was localized to both the apical and basolateral domain. The PDZ protein-binding COOH-terminal tail of PMCA2b was not responsible for its apical membrane localization, as a chimeric pump made of an NH(2)-terminal portion from PMCA4 and a COOH-terminal tail from PMCA2b was targeted to the basolateral domain. Deletion of the last six residues of the COOH terminus of either PMCA2b or PMCA4b did not alter their membrane targeting, suggesting that PDZ protein interactions are not essential for proper membrane localization of the pumps. Instead, we found that alternative splicing affecting the first cytosolic loop determined apical membrane targeting of PMCA2. Only the "w" form, which contains a 45-amino acid residue insertion, showed prominent apical membrane localization. By contrast, the x and z splice variants containing insertions of 14 and 0 residues, respectively, localized to the basolateral membrane. The w splice insert was the crucial determinant of apical PMCA2 localization, and this was independent of the splice configuration at the COOH-terminal end of the pump; both PMCA2w/b and PMCA2w/a showed prominent apical targeting, whereas PMCA2x/b, PMCA2z/b, and PMCA2z/a were confined to the basolateral membrane. These data report the first differential effect of alternative splicing within the first cytosolic loop of PMCA2 and help explain the selective enrichment of specific PMCA2 isoforms in specialized membrane compartments such as stereocilia of auditory hair cells.  相似文献   

6.
Although the presence of a dominant basolateral sorting signal ensures that the majority of newly synthesized epidermal growth factor (EGF) receptors are delivered directly to the basolateral surface in polarized epithelial cells, a fraction of the receptors are also delivered to the apical surface. Similar to most basolateral membrane proteins, the EGF receptor has an additional signal(s) that selectively targets molecules lacking a dominant basolateral signal to the apical surface. Although the physiological relevance of signal hierarchy is not known, alternative targeting may occur in different epithelial cell types or during development. The goal of this study, therefore, was to determine the effect of membrane domain location on EGF receptor function, focusing on EGF-induced MAP kinase signaling and DNA synthesis. Whereas ligand responsiveness was restricted to the basolateral domain in Madin-Darby canine kidney (MDCK) cells expressing a normal complement of receptors, apical ligand was effective if apical receptor density was increased by overexpression of an exogenous wild-type human gene. Unexpectedly, cells expressing apically localized, cytoplasmically truncated receptors, which behave as dominant negative mutations in other cell types, were also responsive to apical EGF. The cytoplasmically truncated molecules appear to have at least two effects: first, to increase the local concentration of ligand at the apical cell surface; and second, to facilitate activation of the relatively few native EGF receptors normally located at the apical surface. These results indicate that cell context is a critical determinant of receptor mutant protein phenotype.  相似文献   

7.
B Aroeti  K E Mostov 《The EMBO journal》1994,13(10):2297-2304
Polarized epithelial cells can sort plasma membrane proteins to the apical or basolateral domain either by direct targeting from the trans-Golgi network (TGN) or by targeting to one surface, followed by endocytosis and transcytosis to the opposite surface. In Madin-Darby canine kidney (MDCK) cells, targeting of the polymeric immunoglobulin receptor (pIgR) to the basolateral surface is controlled by a sorting signal residing in the membrane proximal 17 amino acids of the cytoplasmic domain of this receptor. We have recently found that individual mutations at any of three residues in this signal, His656, Arg657 and Val660, substantially decrease targeting from the TGN to the basolateral surface and correspondingly increase targeting from the TGN to the apical surface. Here we report that these mutations decrease the recycling of basolaterally endocytosed pIgR to that surface, and correspondingly increase its transcytosis to the apical surface. This effect occurred in mutant pIgRs that either contained the full-length cytoplasmic domain or were truncated to contain only the 17-residue basolateral targeting signal, and was independent of phosphorylation of pIgR at Ser664. Our results indicate that polarized sorting of the pIgR in the endocytotic and exocytotic pathways are controlled by the same amino acids.  相似文献   

8.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

9.
The coxsackievirus and adenovirus receptor (CAR) mediates attachment and infection by coxsackie B viruses and many adenoviruses. In human airway epithelia, as well as in transfected Madin-Darby canine kidney cells, CAR is expressed exclusively on the basolateral surface. Variants of CAR that lack the cytoplasmic domain or are attached to the cell membrane by a glycosylphosphatidylinositol anchor are expressed on both the apical and basolateral surfaces. We have examined the localization of CAR variants with progressive truncations of the cytoplasmic domain, as well as with mutations that ablate a potential PDZ (PSD95/dlg/ZO-1) interaction motif and a putative tyrosine-based sorting signal. In addition, we have examined the targeting of two murine CAR isoforms, with different C-terminal sequences. The results suggest that multiple regions within the CAR cytoplasmic domain contain information that is necessary for basolateral targeting.  相似文献   

10.
Mahon MJ 《Cellular signalling》2011,23(10):1659-1668
The parathyroid hormone 1 receptor (PTH1R), a primary regulator of mineral ion homeostasis, is expressed on both the apical and basolateral membranes of kidney proximal tubules and in the LLC-PK1 kidney cell line. In LLC-PK1 cells, apical PTH1R subpopulations are far more effective at signaling via phospholipase (PLC) than basolateral counterparts, revealing the presence of compartmental signaling. Apical PTH1R localization is dependent upon direct interactions with ezrin, an actin-membrane cross-linking scaffold protein. Ezrin undergoes an activation process that is dependent upon phosphorylation and binding to phosphatidylinositol-4,5-bisphosphate (PIP2), a lipid that is selectively concentrated to apical surfaces of polarized epithelia. Consistently, the intracellular probe for PIP2, GFP-PLCδ1-PH, localizes to the apical membranes of LLC-PK1 cells, directly overlapping ezrin and PTH1R expression. Activation of the apical PTH1R shifts the GFP-PLCδ1-PH probe from the apical membrane to the cytosol and basolateral membranes, reflecting domain-specific activation of PLC and hydrolysis of PIP2. This compartmental signaling is likely due to the polarized localization of PIP2, the substrate for PLC. PIP2 degradation using a membrane-directed phosphatase shifts ezrin localization to the cytosol and induces ezrin de-phosphorylation, processes consistent with inactivation. PIP2 degradation also shifts PTH1R expression from brush border microvilli to basolateral membranes and markedly blunts PTH-elicited activation of the MAPK pathway. Transient expression of ezrin in HEK293 cells shifts PTH1R expression from the plasma membrane to microvilli-like surface projections that also contain PIP2. As a result, ezrin enhances PTH mediated activation of the PLC pathway in this cell model with increasing total receptor surface expression. Collectively, these findings demonstrate that the apical segregation of PIP2 to the apical domains not only promotes the activation of ezrin and the subsequent formation of the PTH1R containing scaffold, but also ensures the presence of ample substrate for propagating the PLC pathway.  相似文献   

11.
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.  相似文献   

12.
We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature radiolabeled HA 4 associated with the hepatocyte plasma membrane fraction has become apical even after 150 min of chase. Our results suggest a mechanism for hepatocyte plasma membrane biogenesis in vivo in which all integral plasma membrane proteins are shipped first to the basolateral domain, followed by the specific retrieval and transport of apical proteins to the apical domain at distinct rates.  相似文献   

13.
ERBB2 is a receptor tyrosine kinase present on the basolateral membrane of polarized epithelia and has important functions in organ development and tumorigenesis. Using mutagenic analyses and Madin-Darby canine kidney (MDCK) cells, we have investigated the signals that regulate basolateral targeting of ERBB2. We show that basolateral delivery of ERBB2 is dependent on a novel bipartite juxtamembrane sorting signal residing between Gln-692 and Thr-701. The signal shows only limited sequence homology to known basolateral targeting signals and is both necessary and sufficient for correct sorting of ERBB2. In addition we demonstrate that this motif can function as a dominant basolateral targeting signal by its ability to redirect the apically localized P75 neurotrophin receptor to the basolateral membrane domain of polarized epithelial cells. Interestingly, LLC-PK1 cells, which are deficient for the micro 1B subunit of the AP1B adaptor complex, missort a large proportion of ERBB2 to the apical membrane domain. This missorting can be partially corrected by the introduction of micro 1B, suggesting a possible role for AP1B in ERBB2 endosomal trafficking. Furthermore, we find that the C-terminal ERBIN binding domain of ERBB2 is not necessary for its basolateral targeting in MDCK cells.  相似文献   

14.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

15.
The plasma membrane of polarized epithelial cells is divided into apical and basolateral surfaces, with different compositions. Proteins can be sent directly from the trans-Golgi network (TGN) to either surface, or can be sent first to one surface and then transcytosed to the other. The glycosyl phosphatidylinositol anchor is a signal for apical targeting. Signals in the cytoplasmic domain containing a β-turn determine basolateral targeting and retrieval, and are related to other sorting signals. Transcytosed proteins, such as the polymeric immunoglobulin receptor (plgR), are endocytosed from the basolateral surface and then accumulate in a tubular compartment concentrated underneath the apical surface. This compartment, tentatively termed the apical recycling compartment, may be a central sorting station, as it apparently receives material from both surfaces and sorts them for delivery to the correct surface. Delivery to the apical surface from both the TGN and the apical recycling compartment appears to be regulated by protein kinases A and C, and endocytosis from the apical surface is also regulated by kinases. Transcytosis of the plgR is additionally regulated by phosphorylation of the plgR and by ligand binding to the plgR. Regulation of traffic in polarized epithelial cells plays a central role in cellular homeostasis, response to external signals and differentiation.  相似文献   

16.
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.  相似文献   

17.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

18.
Local Ca(2+) signaling requires proper targeting of the Ca(2+) signaling toolkit to specific cellular locales. Different isoforms of the plasma membrane Ca(2+) pump (PMCA) are responsible for Ca(2+) extrusion at the apical and basolateral membrane of polarized epithelial cells, but the mechanisms and signals for differential targeting of the PMCAs are not well understood. Recent work demonstrated that the alternatively spliced w-insert in PMCA2 directs this pump to the apical membrane. We now show that inserting the w-insert into the corresponding location of the PMCA4 isoform confers apical targeting to this normally basolateral pump. Mutation of a di-leucine motif in the C-tail thought to be important for basolateral targeting did not enhance apical localization of the chimeric PMCA4(2w)/b. In contrast, replacing the C-terminal Val residue by Leu to optimize the PDZ ligand site for interaction with the scaffolding protein NHERF2 enhanced the apical localization of PMCA4(2w)/b, but not of PMCA4x/b. Functional studies showed that both apical PMCA4(2w)/b and basolateral PMCA4x/b handled ATP-induced Ca(2+) signals with similar kinetics, suggesting that isoform-specific functional characteristics are retained irrespective of membrane targeting. Our results demonstrate that the alternatively spliced w-insert provides autonomous apical targeting information in the PMCA without altering its functional characteristics.  相似文献   

19.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

20.
A cDNA encoding the full-length 75-kD human nerve growth factor receptor was transfected into MDCK cells and its product was found to be expressed predominantly (80%) on the apical membrane, as a result of vectorial targeting from an intracellular site. Apical hNGFR bound NGF with low affinity and internalized it inefficiently (6% of surface bound NGF per hour). Several mutant hNGFRs were analyzed, after transfection in MDCK cells, for polarized surface expression, ligand binding, and endocytosis. Deletionof juxta-membrane attachment sites for a cluster of O-linked sugars did not alter apical localization. A mutant receptor lacking the entire cytoplasmic tail (except for the five proximal amino acids) was also expressed on the apical membrane, suggesting that information for apical sorting was contained in the ectoplasmic or transmembrane domains. However, a 58 amino acid deletion in the hNGFR tail that moved a cytoplasmic tyrosine (Tyr 308) closer to the membrane into a more charged environment resulted in a basolateral distribution of the mutant receptor and reversed vectorial (basolateral) targeting. The basolateral mutant receptor also internalized 125I-NGF rapidly (90% of surface bound NGF per hour), exhibited a larger intracellular fraction and displayed a considerably shortened half-life (approximately 3 h). We suggest that hNGFR with the internal cytoplasmic deletion expresses a basolateral targeting signal, related to endocytic signals, that is dominant over apical targeting information in the ecto/transmembrane domains. These results apparently contradict a current model that postulates that basolateral targeting is a default mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号