首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Brassica anthers during microsporogenesis, the tapetum cells contain two abundant lipid-rich organelles, the tapetosomes possessing oleosins and triacylglycerols (TAGs), and the elaioplasts having unique polypeptides and neutral esters. B. campestris, for its simplicity of possessing only the AA genome and one predominant oleosin of 45 kDa, was studied. In the developing anthers, the lipids and proteins of the tapetosomes and elaioplasts were concomitantly accumulated but selectively degraded or retained. Upon incubation of isolated tapetosomes in a pH-5 medium, the predominant 45 kDa oleosin underwent selective enzymatic proteolysis to a 37 kDa fragment, which was not further hydrolyzed upon prolonged incubation. The unreacted 45 kDa oleosin was retained in the organelles, whereas the 37 kDa fragment was released to the exterior. The fragment would become the predominant 37 kDa polypeptide in the pollen coat. Isolated tapetosomes did not undergo hydrolysis of the TAGs upon incubation in media of diverse pHs. An alkaline lipase in the soluble fraction of the anther extract was presumed to be the enzyme that would hydrolyze the tapetosome TAGs, which disappeared in the anthers during development. The tapetum elaioplasts contained several unique polypeptides of 31-36 kDa. The gene encoding a 32 kDa polypeptide was cloned, and its deduced amino acid sequence was homologous to those of two proteins known to be present on the surface of fibrils in chromoplasts. Upon incubation of isolated elaioplasts in media of diverse pHs, the organelle polypeptides were degraded completely and most rapidly at pH 5, whereas the neutral esters remained unchanged; these neutral esters would become the major lipid components of the pollen coat. The findings show that the constituents of the two major tapetum organelles underwent very different paths of degradation, or modification, and transfer to the pollen surface.  相似文献   

2.
The purpose of this study is to characterise the biosynthesis, targeting and processing of some of the major protein components of the pollen coat, or tryphine, of Brassica napus. The authors have N-terminally sequenced 11 of the most abundant pollen coat polypeptides, and nine of these sequences correspond to proteolytically cleaved products of seven oleosin-like genes, i.e. Oln B;1 to Oln B;6 and Oln B;11. The Oln B;11 gene product is co- or post-translationally targeted in vitro to canine microsomal membranes. This implies that the oleosin-like protein is targeted to the endoplasmic reticulum in tapetal cells in vivo. Affinity-purified antibodies raised against a 20-residue domain of Oln B;3 and B;4 gene products cross-reacted with full-length proteins of 45–48 kDa in early developing (< 2 mm to 5 mm) buds and anthers, but recognised truncated proteins of 32–38 kDa at later (4 mm to 7 mm) stages of development. The 45–48 kDa immunoreactive proteins were associated with a floating lipid body fraction obtained from a tapetal/locular fluid extract from maturing anthers and a major 48 kDa polypeptide from this fraction was confirmed by N-terminal sequencing to be a full length product of the Oln B;3 gene. Quantitative immunocytochemical studies showed that the full length 45–48 kDa oleosin-like proteins were specifically localised in the interior of tapetal cytoplasmic lipid bodies where they were associated with a regular hexagonal-like fibrous reticulum. No significant labelling of elaioplasts was observed. The same antibodies specifically labelled 32–38 kDa oleosin-like proteins on the extracellular pollen coat of maturing pollen grains. These results demonstrate for the first time that many of the major pollen coat proteins are derived from an endoproteolytic cleavage of precursor oleosin-like proteins that originally accumulate within the large cytoplasmic lipid bodies of tapetal cells.  相似文献   

3.
Hsieh K  Huang AH 《The Plant cell》2007,19(2):582-596
Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)-derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ localization analyses of developing Brassica napus anthers revealed flavonoids present exclusively in tapetum cells, first in an ER network along with flavonoid-3'-hydroxylase and then in ER-derived tapetosomes. Flavonoids were absent in the cytosol, elaioplasts, vacuoles, and nuclei. Subcellular fractionation of developing anthers localized both flavonoids and alkanes in tapetosomes. Subtapetosome fractionation localized flavonoids in ER-derived vesicles, and alkanes and oleosins in lipid droplets. After tapetum cell death, flavonoids, alkanes, and oleosins were located on mature pollen. In the Arabidopsis thaliana mutants tt12 and tt19 devoid of a flavonoid transporter, flavonoids were present in the cytosol in reduced amounts but absent in tapetosomes and were subsequently located on mature pollen. tt4, tt12, and tt19 pollen was more susceptible than wild-type pollen to UV-B irradiation on subsequent germination. Thus, tapetosomes accumulate ER-derived flavonoids, alkanes, and oleosins for discharge to the pollen surface upon cell death. This tapetosome-originated pollen coat protects the haploidic pollen from UV light damage and water loss and aids water uptake.  相似文献   

4.
Pollen-stigma interactions on wet- and dry-type stigmas involve similar processes: the hydration of the pollen, followed by pollen tube growth and penetration of the stigma. Furthermore, in some species, identical molecules, namely lipids, are used to achieve this. In addition to lipids, oleosin-like proteins of the pollen coat of dry-type stigma plants have been shown to be involved in pollen-stigma interactions. However, little information is present about the proteins on the surface of pollen of wet-type stigma plants, in particular that of the Solanaceae. To analyze proteins from the surface of pollen of Nicotiana tabacum (tobacco), a solanaceous plant, we used an antiserum raised against Brassica pollen coat, a dry-type stigma plant of the Brassicaceae. In addition we used a molecular approach to identify tobacco homologues of oleosin-like genes. Our results show that no proteins similar to Brassica oleracea pollen coat proteins are present on the surface of tobacco pollen, and that oleosin-like genes are not expressed in tobacco anthers or stigmas.  相似文献   

5.
Biogenesis and function of the lipidic structures of pollen grains   总被引:31,自引:0,他引:31  
 Pollen grains contain several lipidic structures, which play a key role in their development as male gametophytes. The elaborate extracellular pollen wall, the exine, is largely formed from acyl lipid and phenylpropanoid precursors, which together form the exceptionally stable biopolymer sporopollenin. An additional extracellular lipidic matrix, the pollen coat, which is particularly prominent in entomophilous plants, covers the interstices of the exine and has many important functions in pollen dispersal and pollen-stigma recognition. The sporopollenin and pollen coat precursors are both synthesised in the tapetum under the control of the sporophytic genome, but at different stages of development. Pollen grains also contain two major intracellular lipidic structures, namely storage oil bodies and an extensive membrane network. These intracellular lipids are synthesised in the vegetative cell of the pollen grain under the control of the gametophytic genome. Over the past few years there has been significant progress in elucidating the composition, biogenesis and function of these important pollen structures. The purpose of this review is to describe these recent advances within the historical context of research into pollen development. Received: 1 November 1997 / Revision accepted: 3 February 1998  相似文献   

6.
Spatial distribution and compositional analyses of the lipidic constituents in pollen and stigma of sunflower (Helianthus annuus L. cv. Morden) were conducted using ultrastructural, histochemical, and biochemical analysis. Detection of secretions at the base of stigmatic papillae and neutral lipid accumulations on the surface of stigmatic papillae and between adjacent pseudopapillae demonstrates the semidry nature of stigma surface in sunflower. Pollen coat is richer in lipids (8%) than stigma (2.2%) on fresh weight basis. Nile Red-fluorescing neutral lipids are preferentially localized in the pollen coat. Neutral esters and triacylglycerols (TAGs) are the major lipidic constituents in pollen grains and stigma, respectively. Lignoceric acid (24:0) and cis-11-eicosenoic acid (20:1) are specifically expressed only in the pollen coat. Similar long-chain fatty acids have earlier been demonstrated to play a significant role during the initial signaling mechanism leading to hydration of pollen grains on the stigma surface. Lipase (EC 3.1.1.3) activity is expressed both in pollen grains and stigma. Stigma exhibits a better expression of acyl-ester hydrolase (EC 3.1.1.1) activity than that of observed in both the pollen fractions. Expression of two acyl-ester hydrolases (41 and 38 kDa) has been found to be specific to pollen coat. Specific expression of lignoceric acid (24:0) in pollen coat and localization of lipase in pollen and stigma have been discussed to assign possible roles that they might play during pollen–stigma interaction.  相似文献   

7.
Modifying the pollen coat protein composition in Brassica   总被引:2,自引:0,他引:2  
The interactions between pollen and stigma are essential for plant reproduction and are made possible by compounds, such as proteins and lipids, located on their surfaces. The pollen coat is formed in part by compounds synthesized in, and released from, the tapetum, which become transferred to the pollen coat late in pollen development. In the Brassicaceae the predominant proteins of the mature pollen coat are the tapetal oleosin-like proteins, which are highly expressed in, and ultimately transferred from, the tapetum. Here we report the modification of the protein composition of the pollen coat by the addition of an active enzyme which was synthesized in the tapetum. The marker enzyme beta-glucuronidase (GUS) was successfully targeted to the pollen coat in transgenic Brassica carinata plants expressing GUS translationally fused to a B. napus tapetal oleosin-like protein (BnOlnB;4). To our knowledge this is the first demonstration of the targeting of an enzyme to the pollen coat.  相似文献   

8.

Background and Aims

The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.

Methods

In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.

Key Results

Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively.

Conclusions

This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.  相似文献   

9.
Tapetosomes are abundant organelles in tapetum cells of floral anthers in Brassicaceae species. They contain triacylglycerols (TAGs), the amphipathic protein oleosins and putative vesicles and play a predominant role in pollen-coat formation. Here we report the biogenesis and structures of tapetosomes in Brassica. Immunofluorescence confocal microscopy revealed that during early anther development, the endoplasmic reticulum (ER) luminal protein calreticulin existed as a network in tapetum cells, which contained no oleosins. Subsequently, oleosins appeared together with calreticulin in the ER network, which possessed centers with a higher ratio of oleosin to calreticulin. Finally, the ER network largely disappeared, and solitary tapetosomes containing oleosins and calreticulin became abundant. Transmission electron microscopy also revealed a close association between a maturing tapetosome and numerous ER cisternae. Mature, solitary tapetosomes were isolated and found to contain oleosins, calreticulin and the ER luminal binding protein (BiP). Isolated tapetosomes were treated with sodium carbonate and subfractionated by centrifugation. Two morphologically distinct constituents were isolated: low-density oil droplets, which contained oleosins and TAGs, and relatively high-density cisternae-like vesicles, which possessed calreticulin and BiP. Thus, tapetosomes are composed of oleosin-coated oil droplets and vesicles, both of which are assembled in and then detached from the ER. The structure and biogenesis of tapetosomes are unique among eukaryotic organelles. After tapetum cells lyzed, oleosins but not calreticulin and BiP of tapetosomes were transferred to the pollen surface.  相似文献   

10.
Summary.  The presence of abundant oil bodies in the mature olive pollen grain has led us to focus on the behavior of these lipid bodies during pollen development and in vitro pollen germination. The appearance, increase, and accumulation of lipid bodies have been determined by following the sequential development of the pollen grain. Semithin slices of anthers and pollen grains were stained with Sudan Black B in order to identify neutral lipids. Ultrastructural studies were also carried out. Our results show a notable increase in lipid bodies between the young-pollen-grain stage and the mature-pollen-grain stage. Substantial polarization of lipid bodies was observed after 1 or 2 h of pollen incubation in germination medium. During pollen tube growth, the lipid bodies are located near the germinative aperture after 3 h of incubation, as well as inside the pollen tube, thus suggesting that the lipid bodies move from the pollen grain to the pollen tube. After 7 h of germination the presence of lipid bodies inside the pollen tube is no longer substantial. Our results support the idea that lipid bodies are involved in pollen germination, stigma penetration, and pollen tube growth. These results are discussed in connection with their implications for the pollen germination process. Received June 4, 2002; accepted October 29, 2002; published online April 8, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain.  相似文献   

11.
From ontogeny of tapetum in Anemarrhena asphodeloides, the ultrastructnral features of tapetal cells are as follows: 1. The profuse rough endoplasmic reticula are often closely associated with lipid bodies and vesicles, and linking each other into compound organelles. This is one of the striking features in Anemarrhena tapetal cell. 2. After meiosis of the micro- spore mother cell, the tapetal cytoplasm contains a large number of vesicles, in which the electron opaque substances are accumulated. Then they fuse to form a large zone of storage material similar to lipid bodies. Before accumulation of opaque material, these vesicles in the tapetal cytoplasm are larger than those in elaioplast (see Plate II, Fig. 2). 3. During stage of pollen maturation the tapetal cytoplasm becomes disorganized and the cells are almost occupied by the elaioplasts at various degree of development. On the basis of the report of Dickinson (1973), the formation of a pollen coatings of Lilium is different from that of Raphanus. The osmiophilic bodies in the former have originated from membrane lamellae or membranous system of plastid, and those in the latter are formed from the plastid vescles. It is intereting to note that the mode of origin of the plastid osmiophilic bodies in Anemarrhena is rather similar to that of Raphanus than to Lilium. About the origin of the pro-Ubisch bodies in tapetal cytoplasm of Anemarrhena studies revealed that a large number of the medium electron dense bodies appear in the tapetal cytoplasm. This is the first sign of the formation of the pro-Ubisch bodies and its character is very similar to spherosome in many respects. From many ultrasections, it can be seen that the ER profile is closely associated with the pro-Ubisch bodies. Thus we can conclude that the proubisch bodies of Anemarrhena are derived from rough endoplasmic reticulum. Although Heslop-Harrison et al. (1969) has considered that the compound Ubisch bodies do not occur in Lilium, there are prominent aggregation of Ubisch bodies in Anemarrhena, same as reported in Oxalis (Cariel, 1967), Silene (Heslop-Harrison, 1963a) and Helleborus (Echlin et al., 1968). After investigation on certain angiosperm in 1972, Gupta and Nanda have reported that the peritapetal membrane belonging to tapetum of secretory type lies against the inner tang- ential wall; in the plasmodial type of tapetum, it is formed on the outer tangential wall. But in some species of Poaceae and Solanaceae, the peritapetal membrane is formed on both sides of the tapetal cells (Banerjee, 1967; Reznickov & Willemse, 1980). In the secretory tapetum of Anemarrhena, the peritapetal membrane, which do not comply with the conclusion of Gupta & Nanta (1972), is formed on outer tangential wall.  相似文献   

12.
A large, heterogeneous, highly expressed gene family encoding oleosin-like proteins is described in the Brassicaceae. íeven related cDNA sequences were isolated from Brassica napus anther mRNA using RACE-PCR and compared with other recently described anther-specific oleosin-like genes from B. napus. The expression patterns of four representative members of this diverse gene family were analyzed by Northern blotting and in situ hybridization. In all cases, the genes were expressed specifically in the tapetum of 3–5 mm B. napus buds, which contained microspores at the late-vacuolate and bicellular stages of development. The predicted protein products are ordered into subclasses, each of which has a characteristic C-terminal domain, containing different amino acid motifs or repeated residues. Tryphine (pollen coat) fractions from mature B. napus pollen were found to be particularly enriched in polypeptides of apparent molecular weights 32–38 kDa, plus numerous less abundant polypeptides of less than 15 kDa. The N-terminal 15–20 residues of three of these polypeptides (12, 32 and 38 kDa) were found by microsequencing to be identical to parts of the predicted amino acid sequences of three of the tapetal-expressed oleosin-like genes. This indicates the possibility of post-translational modification of these proteins resulting in a cleavage of the primary translation products in order to generate the mature tryphine polypeptides. These data imply that a large and diverse group of oleosin-like proteins is synthesized in the tapeturn of B. napus anthers and that following tapetal degradation, these proteins, possibly in modified form, then relocate to the developing microspores where they eventually constitute some of the major components of the extracellular tryphine of mature pollen grains. These proteins share a conserved 70 amino acid residue hydrophobic domain and are related structurally to the seed-specific intracellular oleosins, although their biological function may be different.  相似文献   

13.
E. Pacini  G. Casadoro 《Protoplasma》1981,106(3-4):289-296
Summary The plastid ontogenesis inOlea europaea tapetum has been studied. Tapetum plastids start their development as proplastids and differentiate into elaioplasts. At the end of their development the tapetal cells degenerate and are substituted by roundish lipidic masses which will later form an exine coating (Pollenkitt). During their ontogenesis the plastids are characteristically associated with membrane outlines of mostly smooth ER, which appear to be correlated with lipid accumulation inside the plastids.  相似文献   

14.
 The ratio of loculus volume to the volume of the entire anther began to increase from the microspore mother cell stage and reached 32.3% at anthesis. The content of the loculus was examined in Lilium during pollen development and two waves could be distinguished. From the premeiotic stage until the vacuolated microspore stage, the loculus consisted of neutral polysaccharides, pectins and proteins. These substances originated from tapetal activity from the premeiotic stage until the young microspore stage. Dictyosomes and rough endoplasmic reticulum seemed to be involved in tapetal secretion, although, in some mitochondria, vesicles progressively developed as early as premeiosis and increased until the young microspore stage, which could reveal their involvement in the secretion process. At this stage, numerous cytoplasmic vesticles containing material similar to the locular material fused with the plasma membrane of the tapetum so that vesicle content was in contact with the loculus. It seems that tapetal and callose wall degradation at the late tetrad stage may also have contributed to the production of material in the loculus. From pollen mitosis to anthesis, the anther loculus contained mainly the pollenkitt which was synthesized in the tapetum between the young microspore stage and the vacuolated microspore stage. At the young microspore stage, proplastids divided and developed into elaioplasts and smooth endoplasmic reticulum (SER) increased dramatically. Pollenkitt had a double origin: some droplets were extruded directly from the plastid stroma through the plastid envelopes; the others were unsaturated lipid globules, which presumably derived from the interaction between SER saccules and plastids. Received: 2 September 1997 / Revision accepted: 12 March 1998  相似文献   

15.
16.
The exine acts as a protectant of the pollen from environmental stresses, and the pollen coat plays an important role in the attachment and recognition of the pollen to the stigma. The pollen coat is made of lipidic organelles in the tapetum. The pollen coat is necessary for fertility, as pollen coat-less mutants, such as those deficient in sterol biosynthesis, show severe male sterility. In contrast, the exine is made of sporopollenin precursors that are biosynthesized in the tapetum. Some mutants involved in sporopollenin biosynthesis lose the exine but show the fertile phenotype. One of these mutants, cyp704b1, was reported to lose not only the exine but also the pollen coat. To identify the cause of the fertile phenotype of the cyp704b1 mutant, the detailed structures of the tapetum tissue and pollen surface in the mutant were analyzed. As a result, the cyp704b1 mutant completely lost the normal exine but had high-electron-density granules localized where the exine should be present. Furthermore, normal lipidic organelles in the tapetum and pollen coat embedded between high-electron-density granules on the pollen surface were observed, unlike in a previous report, and the pollen coat was attached to the stigma. Therefore, the pollen coat is necessary for fertility, and the structure that functions like the exine, such as high-electron-density granules, on the pollen surface may play important roles in retaining the pollen coat in the cyp704b1 mutant.  相似文献   

17.
Murphy DJ 《Protoplasma》2006,228(1-3):31-39
Summary. I have used cellular and molecular genetic and bioinformatic approaches to characterise the components of the pollen coat in plants of the family Brassicaceae, including Arabidopsis thaliana and several brassicas including Brassica napus, B. oleracea, and B. rapa. The pollen coat in these species is mostly made up of a unique mixture of lipids that is highly enriched in acylated compounds, such as sterol esters and phospholipids. These acyl lipids are characterised by an unusually high degree of saturation. The fatty acids typically contain 70–90% saturated acyl residues such as myristate, palmitate, and stearate. The major sterol components of the pollen coat are saturated fatty acyl esters of stigmasterol, campesterol, and campestdienol. In addition to lipids, the second major component of the pollen coat is a specific group of proteins that is dominated by a family of proteins that we term pollenins. Although pollenins are by far the major protein components of the pollen coat of members of the Brassicaceae, proteomic analysis reveals that there are several additional protein components, including lipases, protein kinases, a pectin esterase, and a caleosin. The biosynthesis of these lipids and proteins and their significance for overall pollen function are reviewed and discussed. Correspondence and reprints: Biotechnology Unit, School of Applied Sciences, University of Glamorgan, Pontypridd CF37 1DL, Wales, United Kingdom.  相似文献   

18.
Structural analysis of stigma development in sunflower highlights the secretory role of papillae due to its semi-dry nature. Production of lipid-rich secretions is initiated at the staminate stage of the flowers in stigma development and increases at the receptive stage, coinciding with an extensive development of elaioplasts and endoplasmic reticulum network in the basal region of the papillae. Transfer cells, earlier identified only in the wet type of stigma, are also present in the transmitting tissue of the sunflower stigma. Attainment of physiological maturity by the stigmatic tissue, accompanying development from bud to pistillate stage, appears to affect the initial steps of pollen–stigma interaction. The nature of self-incompatibility in Helianthus has also been investigated in relation with pollen adhesion, hydration and germination. Pollen adhesion to the stigma is a rapid process in sunflower and stigma papillae exhibit greater affinity for pollen during cross pollination as compared to self-pollination. Components of the pollen coat and the pellicle on the surface of stigmatic papillae are critical for the initial phase of pollen–stigma interaction (adhesion and hydration). The lipidic components of pollen coat and the proteinaceous and lipidic components from the surface of the papillae coalesce during adhesion, leading to the movement of water from stigma to the pollen, thereby causing pollen hydration and its subsequent germination. Pollen germination (both in self-and cross-pollen) on the stigma surface and the growth of the pollen tube characterize the flexibility of self-incompatibility in sunflower. Compatible pollen grains germinate and the pollen tube penetrates the stigma surface to enter the nutrient-rich transmitting tissue. The pollen tube from incompatible pollen germination, however, fails to penetrate the stigmatic tissue and it grows parallel to the papillae. Present findings provide new insights into structural and functional relationships during stigma development and pollen–stigma interaction.  相似文献   

19.
20.

Key message

Two Arabidopsis ABC transporters, ABCG1 and ABCG16, are expressed in the tapetal layer, specifically after postmeiotic microspore release, and play important roles in pollen surface development.

Abstract

The male gametophytic cells of terrestrial plants, the pollen grains, travel far before fertilization, and thus require strong protective layers, which take the form of a pollen coat and a pollen wall. The protective surface structures are generated by the tapetum, the tissue surrounding the developing gametophytes. Many ABC transporters, including Arabidopsis thaliana ABCG1 and ABCG16, have been shown to play essential roles in the development of such protective layers. However, the details of the mechanism of their function remain to be clarified. In this study, we show that ABCG1 and ABCG16 are localized at the plasma membrane of tapetal cells, specifically after postmeiotic microspore release, and play critical roles in the postmeiotic stages of male gametophyte development. Consistent with this stage-specific expression, the abcg1 abcg16 double knockout mutant exhibited defects in pollen development after postmeiotic microspore release; their microspores lacked intact nexine and intine layers, exhibited defects in pollen mitosis I, displayed ectopic deposits of arabinogalactan proteins, failed to complete cytokinesis, and lacked sperm cells. Interestingly, the double mutant exhibited abnormalities in the internal structures of tapetal cells, too; the storage organelles of tapetal cells, tapetosomes and elaioplasts, were morphologically altered. Thus, this work reveals that the lack of ABCG1 and ABCG16 at the tapetal cell membrane causes a broad range of defects in pollen, as well as in tapetal cells themselves. Furthermore, these results suggest that normal pollen surface development is necessary for normal development of the pollen cytoplasm.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号