首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress mediated by photodynamic therapy (PDT) mediates the tumoricidal effect, but has also been shown to induce the expression of prosurvival molecules, such as cyclooxygenase-2 (COX-2), which is involved in tumor recurrences after PDT. However, the molecular mechanism is still not fully understood. In this study, we found that activated p38MAPK could significantly up-regulate the activity and expression of histone acetyltransferase p300 (p300HAT) in A375 and C26 cells treated with ALA-and chlorin e6 (Ce6)-mediated photodynamic treatment. A colony-formation assay showed that PDT-induced cytotoxicity was dramatically elevated in the presence of the p300HAT inhibitor anacardic acid (AA). Further studies showed that increased p300HAT acetylates histone H3 and NF-κB p65 subunit to up-regulate the COX-2 expression, which was reduced by AA or p300HAT shRNA. Using chromatin immunoprecipitation analysis, we found that the augmented acetylation of histone H3 and NF-κB increases their binding to the COX-2 promoter region. These in vitro findings were further verified in mice bearing murine C26 and human A375 tumors treated with liposomal Ce6 mediated PDT. Meanwhile, the combination of PDT and AA resulted in greater tumor regression in BALB/c mice bearing C26 tumors, compared with PDT only or combined with COX-2 inhibitor. Finally, we demonstrated that suppression of the PDT-induced p300HAT activity also resulted in the decreased expression of survivin, restoring caspase-3 activity and sensitizing PDT-treated cells from autophagy to apoptosis due to the Becline-1 cleavage. This study demonstrates for the first time the molecular mechanisms involved in histone modification induced by PDT-mediated oxidative stress, suggesting that HAT inhibitors may provide a novel therapeutic approach for improving PDT response.  相似文献   

2.
3.
Multiple roles for acetylation in the interaction of p300 HAT with ATF-2   总被引:1,自引:0,他引:1  
Karanam B  Wang L  Wang D  Liu X  Marmorstein R  Cotter R  Cole PA 《Biochemistry》2007,46(28):8207-8216
  相似文献   

4.
Stretch induces lung embryonic mesenchymal cells to follow a myogenic pathway. Using this system we identified a set of stretch-responsive factors, which we referred to as TIPs (tension-induced/inhibited proteins). TIPs displayed signature motifs characteristic of nuclear receptor coregulators and chromatin remodeling enzymes. A genomic BLAST search suggested that the three TIPs identified were isoforms originated by alternative splicing from a single gene. Functional studies revealed that TIP-1 and TIP-3 were involved in the cell's selection of the myogenic or the adipogenic pathway. TIP-1, induced by stretch, promoted myogenesis, while TIP-3, inhibited by stretch, stimulated adipogenesis. The selection involved TIP-mediated chromatin remodeling via a histone acetylation process and depended on TIP-1 and TIP-3 nuclear receptor binding boxes (NRBs). This study, therefore, suggests a new developmental mechanism linking the presence or absence of tension with divergent differentiation pathways.  相似文献   

5.
Acetylation of proteins by p300 histone acetyltransferase plays a critical role in the regulation of gene expression. The prior discovery of an autoacetylated regulatory loop in the p300 histone acetyltransferase (HAT) domain prompted us to further explore the mechanisms of p300 autoacetylation. Here we have described a kinetic and mass spectrometric analysis of p300 HAT autoacetylation. The rate of p300 HAT autoacetylation was approximately fourth order with respect to p300 HAT domain concentration and thus appeared to be a highly cooperative process. By showing that a catalytically defective p300 HAT domain could be efficiently acetylated by active p300 HAT, we deduced that autoacetylation occurs primarily by an intermolecular mechanism. This was further confirmed using a semisynthetic biotinylated p300 HAT domain that could be physically separated from the catalytically defective p300 HAT by avidin affinity chromatography. Autoacetylation catalyzed by p300 HAT was approximately 1000-fold more efficient than PCAF (p300/CREB-binding protein-associated factor)-mediated acetylation of catalytically defective p300 HAT. Using a novel tandem mass spectrometric approach, it was found to be possible to observe up to 17 autoacetylation events within the intact p300 regulatory loop. Kinetic analysis of the site specificity of p300 autoacetylation reveals a class of rapid events followed by a slower set of modifications. Several of these rapid autoacetylation sites correlate with an acetyltransferase-activating function based on prior mutagenesis analysis.  相似文献   

6.
7.
8.
9.
10.
Muscle proteolysis during sepsis and other catabolic conditions is, at least in part, regulated by glucocorticoids. Dexamethasone-treated myotubes are a commonly used in vitro model of muscle wasting. We reported recently that treatment of cultured L6 myotubes with dexamethasone resulted in increased gene and protein expression of the nuclear cofactor p300 but it is not known whether glucocorticoids upregulate p300 histone acetyl transferase (HAT) activity in muscle and whether p300/HAT activity regulates glucocorticoid-induced muscle proteolysis. Here, we found that treatment of cultured L6 myotubes with dexamethasone resulted in increased nuclear p300/HAT activity. Treatment of myotubes with p300 siRNA or transfection of muscle cells with a plasmid expressing p300 that was mutated in its HAT activity domain blocked the dexamethasone-induced increase in protein degradation, supporting a role of p300/HAT in glucocorticoid-induced muscle proteolysis. In addition to increased HAT activity, treatment of the myotubes with dexamethasone resulted in reduced nuclear expression and activity of histone deacetylases (HDACs) 3 and 6. When myotubes were treated with the HDAC inhibitor trichostatin A, protein degradation increased to the same degree as in dexamethasone-treated myotubes. The results suggest that glucocorticoids increase HAT and decrease HDAC activities in muscle, changes that both favor hyperacetylation. The results also provide evidence that dexamethasone-induced protein degradation in cultured myotubes is, at least in part, regulated by p300/HAT activity.  相似文献   

11.
Differentiation of preadipocytes into mature adipocytes capable of efficiently storing lipids is an important regulatory mechanism in obesity. Here, we examined the involvement of histone deacetylases (HDACs) and histone acetyltransferases (HATs) in the regulation of adipogenesis. We find that among the various members of the HDAC and HAT families, only HDAC9 exhibited dramatic down-regulation preceding adipogenic differentiation. Preadipocytes from HDAC9 gene knock-out mice exhibited accelerated adipogenic differentiation, whereas HDAC9 overexpression in 3T3-L1 preadipocytes suppressed adipogenic differentiation, demonstrating its direct role as a negative regulator of adipogenesis. HDAC9 expression was higher in visceral as compared with subcutaneous preadipocytes, negatively correlating with their potential to undergo adipogenic differentiation in vitro. HDAC9 localized in the nucleus, and its negative regulation of adipogenesis segregates with the N-terminal nuclear targeting domain, whereas the C-terminal deacetylase domain is dispensable for this function. HDAC9 co-precipitates with USF1 and is recruited with USF1 at the E-box region of the C/EBPα gene promoter in preadipocytes. Upon induction of adipogenic differentiation, HDAC9 is down-regulated, leading to its dissociation from the USF1 complex, whereas p300 HAT is up-regulated to allow its association with USF1 and accumulation at the E-box site of the C/EBPα promoter in differentiated adipocytes. This reciprocal regulation of HDAC9 and p300 HAT in the USF1 complex is associated with increased C/EBPα expression, a master regulator of adipogenic differentiation. These findings provide new insights into mechanisms of adipogenic differentiation and document a critical regulatory role for HDAC9 in adipogenic differentiation through a deacetylase-independent mechanism.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号